• Title/Summary/Keyword: Composite grid system

Search Result 43, Processing Time 0.026 seconds

Probabilistic Reliability Evaluation of Power System using TRELSS I (TRELSS를 이용한 전력계통의 확률론적 신뢰도 평가 I)

  • Kang, Sung-Rok;Tran, Tungtinh;Choi, Jae-Sok;Jeon, Dong-Hoon;Moon, Seung-Pil;Choo, Jin-Boo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.62-66
    • /
    • 2003
  • In recent, the importance and necessity of some studies on reliability evaluation of grid comes from the recent black-out accidents occurred in the world. The quantity evaluation of transmission system reliability is very important under competitive electricity environment. The reason is that the successful operation of electric power under the deregulated electricity market depends on transmission system reliability management. This paper introduces features and operation modes of the Transmission Reliability Evaluation for Large-Scale Systems(TRELSS) Version 5_1, a program made in EPRI, for assessing reliability indices of composite power system. The package accesses not only bulk but also buses indices for reliability evaluation of composite powers system. The characteristics of the TRELSS program are illustrated by the case studies using the IEEE 25buses system.

  • PDF

Probabilistic Reliability Evaluation of Power System using TRELSS VI - Case Study on Transmission Line Planning - (TRELSS를 이용한 전력계통의 확률론적 신뢰도 평가 VI - 송전망 확충계획시 응용에 관한 사례연구 -)

  • Kim, H.;Tran, T.;Choi, J.;Jeon, D.;Choo, J.;Hur, Y.;Han, G.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.78-82
    • /
    • 2004
  • This paper suggests the power system reliability evaluation fur transmission lines planning in composite power systems. In recent the importance and necessity of some studies on reliability evaluation of grid comes from the recent black-out accidents occurred in the world. Since probabilistic criterion can reflect recognize the probabilistic nature of system components, the application of probabilistic criterion has received a lot of attention. This paper introduces features and operation modes of the Transmission Reliability Evaluation fur Large-Scale Systems(TRELSS) Version 6.2, a program made in EPRI, for assessing reliability indices of composite power system. The characteristics of the TRELSS program are illustrated by the case studies using the KEPCO system.

  • PDF

Performance Analysis of the Composite Distributed Directories for High Performance Grid Information Services (고성능 자원정보서비스 구축을 위한 복합 모델 기반 분산 디렉토리의 성능 분석)

  • 권성호;김희철
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.3-6
    • /
    • 2003
  • In this paper, we conduct a performance analysis for the composite scheme that is obtained by combining the data distribution and the data replication schemes usually used for the implementation of distributed directory service systems. The analysis results reveal that the composite model is a viable option to overcome the performance trade-off between the data distribution and the data replication model. In this paper, we present the performance model developed for the composite model by appling queuing modelling. Using the performance model, performance values for a variety of system execution environments are suggested which enable us to bring an efficient design for high performance distributed directories.

  • PDF

Numerical Wave Tank Technology for Multipurpose Simulation in Marine Environmental Engineering (해양환경공학의 다목적 시뮬레이션을 위한 수치파랑수조 기술)

  • 박종천
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.1-7
    • /
    • 2003
  • A virtual reality technology for multipurpose numerical simulation is developed to reproduce and investigate a variety of ocean environmental problems in a 3D Numerical Wave Tank(NWT). The governing equations for solving incompressible fluid motion are Navier-Stokes equation and continuity equation. The Marker-Density function technique is adopted to implement the fully nonlinear freesurface kinematic condition. The marine environmental situations, i.e., waves, currents, etc., are reproduced by use of multi-segmented wavemakers on the basis of the so-called ″snake-principle″. In this paper, some numerical reproduction techniques for regular, and irregular waves, multi-directional waves, Bull's-eye wave. wave-current, and solitary wave are presented, and a model test in motion with large amplitude of roll angle is conducted in the developed 3D-NWT, using a overlaid grid system.

The Study of Aerodynamic Heating Characteristics for the Design of Nose Shapes of Space Launcher (발사체 선두부의 공력가열현상 특성연구)

  • Choi, Won;Kim, Kyu-Hong;Lee, Kyung-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.14-20
    • /
    • 2002
  • The aerodynamic heating at a nose cone is predicted under the KSR-III flight conditions. An equilibrium reacting gas condition is applied. The parametric study is performed with Mach number of 4.9, 10.2 and 15 and for the following nose shapes of hemisphere, cut cylinder and parabola. AUSMPW+ and shock aligned grid technique are used to provide the best aerodynamic solutions. In addition, the composite material of a nose cone is discussed in the viewpoint of a thermal safety.

Study on the Radiation Forces on a Pontoon Type Floating Structure and Submerged Plate : Hydrodynamic Interaction Effect by Submerged Plate (폰툰형 부체구조물과 몰수평판에 작용하는 라디에이션 유체력에 관한 연구 : 몰수평판에 의한 유체력 간섭 영향)

  • Lee, Sang-Min
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.683-687
    • /
    • 2007
  • Hydroelastic deformation of pontoon type floating structure in waves is critical in structural design. Therefore, it is necessary to develop additional technology that make to dissipate the wave energy as the submerged horizontal plate. In this study, we investigate the characteristics of hydrodynamic interaction effect by the submerged plate affecting to the radiation forces on a pontoon type floating structure using numerical analysis. We have developed the numerical method based on the composite grid system that consists of moving and fixed grid to compute the radiation forces due to the heaving motion of pontoon type floating structure and submerged plate. The numerical simulations based on the finite difference method are carried out to solve the fully nonlinear free surface involving the breaking waves and compared with the experimental data to confirm the reliability of the numerical method. Then, we discuss the interaction effects on the hydrodynamic forces that could influence on the hydroelastic response of floating structure.

Probabilistic Evaluation of Voltage Quality on Distribution System Containing Distributed Generation and Electric Vehicle Charging Load

  • CHEN, Wei;YAN, Hongqiang;PEI, Xiping
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1743-1753
    • /
    • 2017
  • Since there are multiple random variables in the probabilistic load flow (PLF) calculation of distribution system containing distributed generation (DG) and electric vehicle charging load (EVCL), a Monte Carlo method based on composite sampling method is put forward according to the existing simple random sampling Monte Carlo simulation method (SRS-MCSM) to perform probabilistic assessment analysis of voltage quality of distribution system containing DG and EVCL. This method considers not only the randomness of wind speed and light intensity as well as the uncertainty of basic load and EVCL, but also other stochastic disturbances, such as the failure rate of the transmission line. According to the different characteristics of random factors, different sampling methods are applied. Simulation results on IEEE9 bus system and IEEE34 bus system demonstrates the validity, accuracy, rapidity and practicability of the proposed method. In contrast to the SRS-MCSM, the proposed method is of higher computational efficiency and better simulation accuracy. The variation of nodal voltages for distribution system before and after connecting DG and EVCL is compared and analyzed, especially the voltage fluctuation of the grid-connected point of DG and EVCL.

Application of a Method Estimating Grid Runoff for a Global High-Resolution Hydrodynamic Model (전지구 고해상도 수문모델 적용을 위한 격자유량 추정 방법 적용 연구)

  • Ryu, Young;Ji, Hee-Sook;Hwang, Seung-On;Lee, Johan
    • Atmosphere
    • /
    • v.30 no.2
    • /
    • pp.155-167
    • /
    • 2020
  • In order to produce more detailed and accurate information of river discharge and freshwater discharge, global high-resolution hydrodynamic model (CaMa-Flood) is applied to an operational land surface model of global seasonal forecast system. In addition, bias correction to grid runoff for the hydrodynamic model is attempted. CaMa-Flood is a river routing model that distributes runoff forcing from a land surface model to oceans or inland seas along continentalscale rivers, which can represent flood stage and river discharge explicitly. The runoff data generated by the land surface model are bias-corrected by using composite runoff data from UNH-GRDC. The impact of bias-correction on the runoff, which is spatially resolved on 0.5° grid, has been evaluated for 1991~2010. It is shown that bias-correction increases runoff by 30% on average over all continents, which is closer to UNH-GRDC. Two experiments with coupled CaMa-Flood are carried out to produce river discharge: one using this bias correction and the other not using. It is found that the experiment adapting bias correction exhibits significant increase of both river discharge over major rivers around the world and continental freshwater discharge into oceans (40% globally), which is closer to GRDC. These preliminary results indicate that the application of CaMa-Flood as well as bias-corrected runoff to the operational global seasonal forecast system is feasible to attain information of surface water cycle from a coupled suite of atmospheric, land surface, and hydrodynamic model.

Experimental Study on the Load Transfer Behavior of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 하중전달 거동에 관한 실험적 연구)

  • Shin, Hyun-Seop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.10-21
    • /
    • 2014
  • The joint of prefabricated steel grid composite deck is composed of concrete shear key and high-tension bolts. The flexural and shear strength of the joint were experimentally evaluated only by the bending and push-out test of the joint element. In this study the lateral load transfer behavior of the joint in deck structure system is experimentally evaluated. Several decks connected by the joint are prefabricated and loaded centrically and eccentrically. In the case of centrically loaded specimens, the analysis results show that for the same loading step the rotation angle of the joint with 4 high-tension bolts is larger than the case of the joint with 9 high-tension bolts. Consequently, flexural stiffness of deck and lateral load transfer decrease in the case of specimen with 4 high-tension bolts. But, in the case of eccentrically loaded specimens, it is found that there are no significant differences in the load transfer behavior. The further analysis results about the structural behavior of the joint show that lateral load transfer can be restricted by the load bearing capacity of the joint as well as punching shear strength of the slab. Furthermore, considering that high-tension bolts in the joint didn't reach to the yielding condition until the punching shear failure, increase in the number of high-tension bolts from 4 to 9 has a greater effect on the flexural stiffness of the joint and deck system than the strength of them.

Static analysis of a radially retractable hybrid grid shell in the closed position

  • Cai, Jianguo;Jiang, Chao;Deng, Xiaowei;Feng, Jian;Xu, Yixiang
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1391-1404
    • /
    • 2015
  • A radially retractable roof structure based on the concept of the hybrid grid shell is proposed in this paper. The single-layer steel trusses of the radially foldable bar structure are diagonally stiffened by cables, which leads to a single-layer lattice shell with triangular mesh. Then comparison between the static behavior between the retractable hybrid grid shell and the corresponding foldable bar shell with quadrangular mesh is discussed. Moreover, the effects of different structural parameters, such as the rise-to-span ratio, the bar cross section area and the pre-stress of the cables, on the structural behaviors are investigated. The results show that prestressed cables can strengthen the foldable bar shell with quadrangular mesh. Higher structural stiffness is anticipated by introducing cables into the hybrid system. When the rise-span ratio is equal to 0.2, where the joint displacement reaches the minimal value, the structure shape of the hyrbid grid shell approaches the reasonable arch axis. The increase of the section of steel bars contributes a lot to the integrity stiffness of the structure. Increasing cable sections would enhance the structure stiffness, but it contributes little to axial forces in structural members. And the level of cable prestress has slight influence on the joint displacements and member forces.