• Title/Summary/Keyword: Composite filament

Search Result 227, Processing Time 0.02 seconds

Effect of Fiber Orientation and Fiber Contents on the Tensile Strength in Fiber-reinforced Thermoplastic Composites (섬유배향과 섬유함유량이 섬유강화 열가소성수지 복합재료의 인장강도에 미치는 영향)

  • Kim, Jin-Woo;Lee, Dong-Gi
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.13-19
    • /
    • 2007
  • Fiber-reinforced thermoplastic composites not only approach almost near to the strength of thermosetting composite but also has excellent productivity, recycling property, and impact resistance, which are pointed as weaknesses of thermosetting composites. The study for strength calculation of one direction fiber-reinforced thermoplastic composites and the study measuring precisely fiber orientation distribution were presented. Need the systematic study for the data base that can predict mechanical properties of composite material and fiber orientation distribution by the fiber content ratio was not constructed. Therefore, this study was investigated what affect the fiber content ratio and fiber orientation distribution have on the strength of composites. Fiber-reinforced thermoplastic composites by changing fiber orientation distribution and the fiber content ratio were made. Tensile strength ratio of $0^{\circ}$ direction of fiber-reinforced composites increased being proportional the fiber content and fiber orientation function as change from isotropy(J=0) to anisotropy(J=1). But, tensile strength ratio of $90^{\circ}$ direction by separation of fiber filament decreased when tensile load is imposed fur width direction of reinforcement fiber length direction.

Prediction of Physical Properties in the Design of Mono-Acetate Filter Cigarette by Response Surface Methodology (반응표면 실험 계획법에 의한 Mono-Acetate 필터담배 설계의 물리성 예측)

  • 김영호;이영택;김성한;김윤동;임광수;김용태
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.1
    • /
    • pp.3-13
    • /
    • 1994
  • To minimize the time ordinarily spent in mono filter cigarette design, we studied the relationship between major seven independant variables ; filament(X1) and total denier(X2), porosity of the aller plug wrap(X3), filter length(X4), Porosity of the tip paper(X5) and cigarette paper(X6) and net weight of the reference cut tobacco(X7). Ninty trial numbers were obtained as a results of using rotatable central composite design and it is analyzed by the multiple regression analysis with stepwise in SAS/pc under restricted conditions. That is, UPD (Y1) = 82.96 - 3.80X1 + 2.50X2 - 3.29X3 - 3.15X5 - 0.83X22 + 1.88X5X6 - 1.38 X5X7(R2: 0.63), EPD(Y2) : 120.91 - 5.70X1 + 3.60X2 + 4.23X4 - 0.93X6 + 4.06X7 (R2=0.84), TVR(Y3) = 49.70 - 0.78X1 + 3.60X3 + 2.00X4 + 4.20X5 - 0.93X6 + 2.64X7 - 1.07X1X2 + 1.0IX1 X3 + 1.05X2X6 + 0.45X22 - 0.64X42 + 1.29X4X6 - 0.97X4X7 - 1.28X5X6 + 1.53X5X7 + 1.39X6X7(R2=0.65), and EVR(Y4) : 3.24-0.21X3-0.20X4 -0.24X5+0.67X6+0.26X4X7 (R2=0.55), where EPD : encapsulated pressure drop, VPD : unencapsulated pressure drop, TVR ; tip ventilation rate, and En : envelope ventilation rate. All variables in the model are significant at the 0.05 level.

  • PDF

Failure Behavior of Pin-jointed Cylindrical Composites Using Acoustic Emission Technique (AE기법을 이용한 원통형 복합재의 핀 체결부 파괴거동)

  • Yoon, Sung-Ho;Hwang, Young-Eun;Kim, Chan-Gyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2012
  • In this paper, the bearing strengths and fracture behaviors of the pin-jointed carbon fiber/epoxy composites were investigated through pin loading test with acoustic emission technique. The composites were fabricated by a filament winding process, and three types of laminated patterns were considered. Type 1 was fabricated with stitch, Type 2 was fabricated without stitich and Type 3 was fabricated with prepregs. According to the results, bearing strength of Type 1 was 3.3% lower than that of Type 2 and that of Type 3 was highest. Type 1 and Type 2 revealed a net-tension failure mode, respectively, whereas Type 3 pattern exhibited a bearing failure mode. Also, acoustic emission energy of the Type 3 was higher than that of the Type 1 and Type 2. Therefore, the Type 3 was found to be structurally safer than the Type 1 and Type 2.

Effects on Addition of Metal Oxides with Low Workfunctions on the Ca-Sr-Ba Oxide Cathodes for VUV Ionizers (VUV 이오나이저용 Ca-Sr-Ba계 산화물 캐소드에 낮은 일함수를 갖는 금속산화물 첨가의 영향)

  • Park, Seung-Kyu;Lee, Jonghyuk;Kim, Ran Hee;Jung, Juhyoung;Han, Wan Gyu;Lee, Soo Huan;Jeon, Sung Woo;Kim, Dae Jun;Kim, Do-Yun;Lee, Kwang-Sup
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.241-251
    • /
    • 2019
  • There are several manufacturing techniques for developing thermionic cathodes for vacuum ultraviolet(VUV) ionizers. The triple alkaline earth metal emitters(Ca-Sr-Ba) are formulated as efficient and reliable thermo-electron sources with a great many different compositions for the ionizing devices. We prepare two basic suspensions with different compositions: calcium, strontium and barium. After evaluating the electron-emitting performance for europium, gadolinium, and yttrium-based cathodes mixed with these suspensions, we selected the yttrium for its better performance. Next, another transition metal indium and a lanthanide metal neodymium salt is introduced to two base emitters. These final composite metal emitters are coated on the tungsten filament and then activated to the oxide cathodes by an intentionally programmed calcination process under an ultra-high vacuum(${\sim}10^{-6}torr$). The performance of electron emission of the cathodes is characterized by their anode currents with respect to the addition of each element, In and Nd, and their concentration of cathodes. Compared to both the base cathodes, the electron emission performance of the cathodes containing indium and neodymium decreases. The anode current of the Nd cathode is more markedly degraded than that with In.

Evaluation of Process Performance and Mechanical Properties according to Process Variables of Pneumatic Carbon Fiber Tow Spreading (공기에 의한 탄소섬유 스프레딩 공정 변수에 따른 프로세스 성능 및 기계적 물성 평가)

  • Roh, Jeong-U;Baek, Un-Gyeong;Roh, Jae-Seung;Nam, Gibeop
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.390-394
    • /
    • 2020
  • The carbon fiber has been damaged via tow spreading process for carbon fiber spread tow. The fiber damage is caused by friction between equipment and fibers or between fibers and fibers in the process of spreading. As a result, mechanical properties are decreased due to differences in process via material and equipment condition. Therefore, minimizing fiber damage have to be considered in the process. In this study, the change in carbon fiber pneumatic spreading process was observed by according to the filament count, sizing content of carbon fiber and process variables in spreading equipment (fiber tension at the beginning, air temperature in spreading zone, vacuum pressure in spreading zone). Tensile strength was evaluated using samples prepared under optimal conditions for each of the carbon fiber varieties, and mechanical properties were reduced due to damage on the carbon fiber.

Prediction of Long-Term Interlaminar Shear Strength of Carbon Fiber/Epoxy Composites Exposed to Environmental Factors (환경인자에 노출된 탄소섬유/에폭시 복합재의 장기 층간전단강도 예측)

  • Yoon, Sung Ho;Shi, Ya Long
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.71-76
    • /
    • 2017
  • The purpose of this study was to predict the long-term performance using the interlaminar shear strength of carbon fiber/epoxy composites exposed to environmental factors. Interlaminar shear specimens, manufactured by the filament winding method, were exposed to the conditions of drying at $50^{\circ}C$, $70^{\circ}C$, and $100^{\circ}C$ and of immersion at $25^{\circ}C$, $50^{\circ}C$, and $70^{\circ}C$ for up to 3000 hours, respectively. According to the results, the interlaminar shear strength did not vary significantly with the exposure time for the drying at $50^{\circ}C$ and $70^{\circ}C$, but it increased somewhat for the drying at $100^{\circ}C$ due to the post curing as the exposure time increased. The interlaminar shear strength of the specimens exposed to the immersion at $25^{\circ}C$ did not change significantly at the beginning of exposure, but it decreased with the exposure time and the degree of decrease increased as the environmental temperature increased. The linear regression equations for the environmental temperatures were obtained from the interlaminar shear strength of the specimens exposed to the immersion for up to 3000 hours. Using these linear regression equations, the interlaminar shear strength was estimated to be within 5.5% of the measured value at $25^{\circ}C$ and $50^{\circ}C$, and 2.3% of the measured value at $70^{\circ}C$. Therefore, the proposed performance prediction procedures can predict well the long-term interlaminar shear strength of carbon fiber/epoxy composites exposed to environmental factors.

The Effect of Heat Treatment Condition on the Mechanical Properties of oxi-PAN Based Carbon Fiber (Oxi-PAN 섬유를 기반으로 제조한 탄소섬유의 탄화 조건에 따른 구조 및 물성의 변화)

  • Choi, Kyeong Hun;Heo, So Jeong;Hwang, Sang-Ha;Bae, Soo Bin;Lee, Hyung Ik;Chae, Han Gi
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.385-391
    • /
    • 2018
  • In this study, carbon fibers were fabricated via carbonization of oxidized polyacrylonitrile (oxi-PAN) under different carbonization conditions. Carbonization of oxi-PAN fiber was performed under four different temperature (1300, 1400, 1500, $1600^{\circ}C$) with four different fiber tensions (14, 25, 35, 45 MPa). Effect of carbonization process on the structural development and mechanical properties of carbon fiber were characterized by single filament fiber tensile test and Raman spectroscopy. A clear correlation exists between the Raman spectrum and the tensile modulus of carbon fiber and effect of carbonization temperature on the tensile modulus showed increased tendency only at higher fiber tension (${\geq}25MPa$) while tensile strength showed decreased or random tendency. Therefore, it may be concluded that the optimization of carbonization temperature of oxi-PAN fiber also requires optimization of fiber tension.