• Title/Summary/Keyword: Composite fiber

Search Result 3,675, Processing Time 0.033 seconds

VOCs Reduction of Visible-light Responsive Photocatalyst coated nylon/polyester composite fiber for Vehicle Interior Parts and Materials (가시광 감응형 광촉매가 코팅처리된 자동차내장재용 Nylon/Polyester 복합섬유의 VOCs 저감)

  • Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.53-58
    • /
    • 2014
  • In this study, characteristics of visible-light responsive photocatalyst Weltouch, especially VOCs reduction of visible-light responsive photocatalyst coated nylon/polyester composite fiber for vehicle interior parts and materials were evaluated. Visible-light responsive photocatalyst Weltouch was observed for both anatase phase and rutile phase. It is activated by light longer than 420nm. VOCs and formaldehyde generated from visible-light responsive photocatalyst treated nylon/polyester composite fiber were reduced confirmly. Visible-light responsive photocatalyst was firmly attached to the surface of nylon/polyester composite fiber without elimination even after 25 times repeated washing. And washing durability of nylon/polyester composite fiber confirmed the excellence that reduction effects of VOCs after repeated washing has appeared as much as before washing.

섬유배향각 분포측정에 잇어서 교점계수법의 정밀도에 미치는 섬유종횡비와 면적비의 영향

  • 이상동;김혁;한길영;김이곤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.659-663
    • /
    • 1995
  • The fiber oriented conditied inside fiber reinforced composite material is a basic factor of mechanical properties of composite materials. It is very important to measure the fiber orientation angel for the determination of molding conditions, mechanical charactistics, and the design of composite materials. In the work, the fiber orientation distribution of simulation figure plotted by PC is measured using image processing in order to examine thr accuracy of intersection counting method. The fiber orientation function measured by intersection countingmethod using image processing is compared with the calculated fiber orientation function. The results show that the measured value of fiber orientation function using intersection counting method is lower than the calculated value, because the number of intersection between the secant line and the fiber with smaller fiber aspect ratio is counted less than with larger fiber aspect ratio.

Shear Strength of Steel Fiber Concrete - Plain Concrete Composite Beams (강섬유보강 콘크리트와 일반 콘크리트 합성보의 전단강도)

  • Kim, Chul-Goo;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.501-510
    • /
    • 2015
  • Composite construction of precast concrete and cast-in-place concrete is currently used for the modular construction. In this case, the use of steel fiber reinforced concrete (SFRC) could be beneficial for precast concrete. However, the shear strength of such composite members (SFRC and cast-in-place concrete) is not clearly defined in current design codes. In the present study, steel fiber composite beam tests were conducted to evaluate the effect of steel fibers on the composite members. The test variables are the area ratio of SFRC and shear reinforcement ratio. The test results showed that when minimum horizontal shear reinforcement was used, the shear strength of composite beams increased in proportion to the area ratio of steel fiber reinforced concrete. However, because of the steel fiber, the composite beams were susceptible to horizontal shear failure. Thus, minimum horizontal shear reinforcement is required for SFRC composite beams.

Feasibility Study of the Damage Monitoring for Composite Materials by the Piezoelectric Method (압전기법을 이용한 복합재료 손상모니터링의 가능성에 관한 연구)

  • Hwang, Hui-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.918-923
    • /
    • 2008
  • Since crack detection for laminated composites in-service is effective to improve the structural reliability of laminated composites, it have been tried to detect cracks of laminated composites by various nondestructive methods. An electric potential method is one of the widely used approaches for detection of cracks for carbon fiber composites, since the electric potential method adopts the electric conductive carbon fibers as reinforcements and sensors and the adoption of carbon fibers as sensors does not bring strength reduction induced by embedding sensors into the structures such as optical fibers. However, the application of the electric method is limited only to electrically conductive composite materials. Recently, a piezoelectric method using piezoelectric characteristics of epoxy adhesives has been successfully developed for the adhesive joints because it can monitor continuously the damage of adhesively bonded structures without producing any defects. Polymeric materials for the matrix of composite materials have piezoelectric characteristics similarly to adhesive materials, and the fracture of composite materials should lead to the fracture of polymeric matrix. Therefore, it seems to be valid that the piezoelectric method can be applied to monitoring the damage of composite materials. In this research, therefore, the feasibility study of the damage monitoring for composite materials by piezoelectric method was conducted. Using carbon fiber epoxy composite and glass fiber composite, charge output signals were measured and analyzed during the static and fatigue tests, and the effect of fiber materials on the damage monitoring of composite materials by the piezoelectric method was investigated.

Large deflection analysis of a fiber reinforced composite beam

  • Akbas, Seref D.
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.567-576
    • /
    • 2018
  • The objective of this work is to analyze large deflections of a fiber reinforced composite cantilever beam under point loads. In the solution of the problem, finite element method is used in conjunction with two dimensional (2-D) continuum model. It is known that large deflection problems are geometrically nonlinear problems. The considered non-linear problem is solved considering the total Lagrangian approach with Newton-Raphson iteration method. In the numerical results, the effects of the volume fraction and orientation angles of the fibre on the large deflections of the composite beam are examined and discussed. Also, the difference between the geometrically linear and nonlinear analysis of fiber reinforced composite beam is investigated in detail.

Behavior of 2-D Biaxial braided hollow composite under bending (굽힘 하중 하에서의 2-D Biaxial Braided 중공형 복합재료의 거동)

  • 서거원;임동진;윤희석
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.12-16
    • /
    • 2000
  • This study is about the effect of braiding on the 2-D biaxial braided hollow composite(BD) compared with unidirectional hollow composite(UD). The specimens were made of T700S Carbon/Epoxy prepreg and T700S dried Carbon yarns. Fiber volume fraction of UD and BD was obtained experimentally and analytically. Fiber volume fraction of BD was derived based on unit cell of braiding yarn section. Bending test was executed to investigate the effect of braiding part. The result of experiment and analysis of fiber volume fraction has good agreement. Bending strength of BD is about 20% higher than that of UD.

  • PDF

Monitoring of Fatigue Damage of Composite Laminates Using Embedded Intensity-Based Optical Fiber Sensors (광강도형 광섬유 센서를 이용한 복합재 적충판의 피로손상 감시)

  • 이동춘;이정주;서대철
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.124-127
    • /
    • 2000
  • In this study, a technique for monitoring of fatigue damage of composite laminates by measuring the stiffness change using embedded intensity-based optical fiber sensors was investigated. Firstly, the underlying measurement principle and structure of intensity-based sensors and then a simple stiffness conversion process was explained. The monitoring technique was evaluated by fatigue tests of composite laminates with an embedded intensity-based sensor. From the test results, the response of the intensity-based sensor showed good correlation with that of surface mounted extensometer. Therefore, it can be concluded that the intensity-based sensors have good potential for the monitoring of fatigue damage of composite structures under fatigue loading. In addition, it could be confirmed that the intensity-based sensors have higher resistance to fatigue than the commercial electrical strain gauge.

  • PDF

Thermal Strain and Temperature Measurements of Structures by Using Fiber-Optic Sensors (광섬유 센서를 이용한 구조물의 열변형 및 온도 측정)

  • 강동훈;강현규;류치영;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.184-189
    • /
    • 2000
  • Two types of fiber-optic sensors, EFPI(extrinsic Fabry-Perot interferometer) and FBG(fiber Bragg grating), have been investigated for measurement of thermal strain and temperature. The EFPI sensor is only for measurement of thermal strain and the FBG sensor is for simultaneous measurement of thermal strain and temperature. FBG temperature sensor was developed to measure strain-independent temperature. This sensor configuration consists of a single-fiber Bragg grating and capillary tube which makes it isolated from external strain. This sensor can then be used to compensate for the temperature cross sensitivity of a FBG strain sensor. These sensors are demonstrated by embedding them into a graphite/epoxy composite plate and by attaching them on aluminum rod and unsymmetric graphitelepoxy composite plate. All the tests were conducted in a thermal chamber with the temperature range $20-100^{\circ}C$. Results of strain measurements by fiber-optic sensors are compared with that from conventional resistive foil gauge attached on the surface.

  • PDF

Micro-electromechanical Model of a Piezoelectric fiber/Piezopolymer matrix composite Actuator (압전섬유/압전지지 복합재 작동기의 전기-기계적 마이크로모델)

  • Kim, Cheol;Koo, Kun-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.372-377
    • /
    • 2001
  • Piezoelectric Fiber Composites with Interdigitated Electrodes (PFCIDE) were previously introduced as an alternative to monolithic wafers with conventional electrodes for applications of structural actuation. This paper is an investigation into the performance improvement of piezoelectric fiber composite actuators by changing the matrix material. This paper presents a modified micro-electromechanical model of a piezoelectric fiber/piezopolymer matrix composite actuator with interdigitated electrodes (PFPMIDE). Various concepts from different backgrounds including three-dimensional linear elastic and dielectric theories have been incorporated into the present linear piezoelectric model. The rule of mixture and the modified method to calculate the effective properties of fiber composites are extended to apply to the PFPMIDE model. The new model is validated comparing with available experimental data and other analytical results.

  • PDF

Effective Material Properties of Composite Materials by Using a Numerical Homogenization Approach (균질화 접근법을 통한 복합재의 유효물성치 계산)

  • Anto, Anik Das;Cho, Hee Keun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.28-37
    • /
    • 2019
  • Due to their flexible tailoring qualities, composites have become fascinating materials for structural engineers. While the research area of fiber-reinforced composite materials was previously limited to synthetic materials, natural fibers have recently become the primary research focus as the best alternative to artificial fibers. The natural fibers are eco-friendly and relatively cheaper than synthetic fibers. The main concern of current research into natural fiber-reinforced composites is the prediction and enhancement of the effective material properties. In the present work, finite element analysis is used with a numerical homogenization approach to determine the effective material properties of jute fiber-reinforced epoxy composites with various volume fractions of fiber. The finite element analysis results for the jute fiber-reinforced epoxy composite are then compared with several well-known analytical models.