• Title/Summary/Keyword: Composite electromagnetic wave absorber

Search Result 34, Processing Time 0.024 seconds

A Study on $[Ni_x-Mg_{0.1}-Zn_{(1-x-0.1)}{\cdot}Fe_2O_4]$-Rubber Composite for Electromagnetic Wave Absorber (전파흡수체용 $[Ni_x-Mg_{0.1}-Zn_{(1-x-0.1)}{\cdot}Fe_2O_4]$-Rubber Composite에 관한 연구)

  • 박연준;김동일
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.4
    • /
    • pp.69-75
    • /
    • 1998
  • The super wideband electromagnetic wave absorber in RF-A-PF type has been proposed, which can be used for an anechoic chamber, wall material to prevent TV ghost, etc, In this paper, $Ni_x-Mg_{0.1}-Zn_(1-x-0.1){\cdot}Fe_2O_4$ Ferrite Powder has been fabricated. Using this, then, [$Ni_x-Mg_{0.1}-Zn_(1-x-0.1){\cdot}Fe_2O_4$-Rubber composite for RF-layer in the RF-A-PF type absorber has been fabricated and its characteristics has been analyzed. As a result, it has been shown that the $Ni_x-Mg_{0.1}-Zn_(1-x-0.1){\cdot}Fe_2O_4$-Rubber composit with the quantity $_x$ of $Ni_x$ between 0.5 and 0.6 is suitable for the RF-layer in the case of which the grain size is sub-micrometer order.

  • PDF

A Study on Electromagnetic Wave Absorbing Properties of $Ni_{0.5}$$-A_{0.1}$-$Zn_{0.4}$.${Fe_2}{O_4}$Ferrite-Rubber Composite by Heat-Treatment Temperature of ferrite (전파흡수체용 $Ni_{0.5}$$-A_{0.1}$-$Zn_{0.4}$.${Fe_2}{O_4}$의 열처리 온도에 따른 Ferrite-Rubber Composite의 전파흡수특성에 관한 연구)

  • 박연준;김동일;이창우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.109-114
    • /
    • 2000
  • In this paper, we studied the relation between heat-treatment temperature of ferrite and electromagnetic wave absorbing properties of ferrite-rubber composite. The heat-treatment temperatures of ferrite are 1200 and 1300 $^{\circ}C$, 2 hr. As s result, it has been shown that the optimum heat-treatment temperature of ferrite for electromagnetic wave absorber are related to the chemical composition. And, we can control electromagnetic wave absorbing properties of ferrite-rubber composite by the control of heat-treatment temperature of ferrite.

  • PDF

A Study on Rubber-Ferrite Composite for Electromagentic Absorber (전파흡수체용 Rubber-Ferrite Composite에 관한 연구)

  • 김동일;박연준;박재석
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1996.09a
    • /
    • pp.111-116
    • /
    • 1996
  • To realize the RF layer of Rubber Ferrite-Air-Solid Ferrite(RF-A-F) that proposed by Y.Naito it is tried to grasp the formulation of composition by varying the ratio of mole and element of Complex Isotropic Ferrite Nix-A0.1-Zn(1-x-0.1)*Fe2O4 As a result it was found that the characteristics of the electromagnetic wave absorber constructed by the selected formulation of compositionin in RF-A-F type were improved.

  • PDF

A Study on Development of Electro Magnetic Wave Absorbers for Mobile Phones (휴대전화 단말기용 전파 흡수체의 개발에 관한 연구)

  • Choi Yun-Seok;Jung Jae-Hyun;Kim Dong-Il
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.423-429
    • /
    • 2006
  • This paper deals with research for development of electromagnetic wave absorbers in sheet type for mobile phones. By controlling the sendust ratio, the $Al(OH)_3$ coating, the thickness, the kind of binders, and the milling time, electromagnetic wave absorbers were prepared and examined. Central frequency shills toward lower 2.2 GHz, 1.29 GHz, 842 MHz with increasing thickness 1 mm, 2 mm, 3 mm of the absorber, and absorption ability controlled each 2.2 GHz to 1.91 GHz, 1.29 GHz to 801 MHz, 842 MH2 to 801 MHz adjust sendust amount from 80 wt% to 85 wt%. The absorption band of the electromagnetic wave absorber coated with $Al(OH)_3$ becomes larger than that of non-coated one. Sendust composite microwave absorbers mixed with CPE were prepared at $70^{\circ}C$ in temperature. The fabricated electromagnetic wave absorbers show a reflection coefficient 5.76 dB at 1.8 GHz in thickness of 0.85 mm.

An Analysis of Natural Lacquer Characteristics and EM Wave Absorber's Absorption Characteristics Using Natural Lacquer as a Binder (옻의 특징과 옻을 지지재로 사용한 전자파 흡수체의 두께에 따른 전파흡순 특성 분석)

  • Kim Dong-Il;Choi Dong-Han;Kim Ki-Man
    • Journal of Navigation and Port Research
    • /
    • v.28 no.10 s.96
    • /
    • pp.861-867
    • /
    • 2004
  • Generally, a silicone rubber and a chloride polyethylene(CPE) have been used as a binder for high-performance composite EM( Electromagnetic) wave absorbers. In this study, the EM wave absorption abilities for natural lacquer which is newly suggested as a binder were investigated MnZn ferrite composite EM wave absorbers mixed with the natural lacquer were prepared and their absorption ability was also investigated. The prepared MnZn ferrite composite EM wave absorbers mixed with natural lacquer showed an improved EM wave absorption characteristics compared with MnZn ferrite EM wave absorbers mixed with the conventional binders. such as a silicone rubber and a chloride polyethylene(CPE). The matching frequency and the absorption ability of EM wave absorbers varied with the thickness of them.

A Study on a Radar Absorbing Structure for Aircraft Leading Edge Application

  • Baek, Sang Min;Lee, Won Jun;Joo, Young Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.215-221
    • /
    • 2017
  • An electromagnetic (EM) wave absorber reduces the possibility of radar detection by minimizing the radar cross section (RCS) of structures. In this study, a radar absorbing structure (RAS) was applied to the leading edge of a blended wing body aircraft to reduce RCS in X-band (8.2~12.4GHz) radar. The RAS was composed of a periodic pattern resistive sheet with conductive lossy material and glass-fiber/epoxy composite as a spacer. The applied RAS is a multifunctional composite structure which has both electromagnetic (EM) wave absorbing ability and load-bearing ability. A two dimensional unit absorber was designed first in a flat-plate shape, and then the fabricated leading edge structure incorporating the above RAS was investigated, using simulated and free-space measured reflection loss data from the flat-plate absorber. The leading edge was implemented on the aircraft, and its RCS was measured with respect to various azimuth angles in both polarizations (VV and HH). The RCS reduction effect of the RAS was evaluated in comparison with a leading edge of carbon fabric reinforced plastics (CFRP). The designed leading edge structure was examined through static structural analysis for various aircraft load cases to check structural integrity in terms of margin of safety. The mechanical and structural characteristics of CFRP, RAS and CFRP with RAM structures were also discussed in terms of their weight.