• 제목/요약/키워드: Composite cathode

검색결과 153건 처리시간 0.021초

Electrical Properties in GDC (Gd2O3-Doped CeO2)/LSCF (La0.6Sr0.4Co0.2Fe0.8O3) Cathode Composites for Intermediate Temperature Solid Oxide Fuel Cells

  • Lee, Hong-Kyeong;Hwang, Jin-Ha
    • 한국세라믹학회지
    • /
    • 제48권1호
    • /
    • pp.110-115
    • /
    • 2011
  • $Gd_2O_3$-doped $CeO_2$ (GDC) and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ (LSCF) composite cathode materials were prepared in order to be applied to intermediate-temperature solid oxide fuel cells. The electrochemical polarization was evaluated using ac impedance spectroscopy involving geometric restriction at the interface between an ionic electrolyte and a mixed-conducting cathode. In order to optimize the cathode composites applicable to a GDC electrolyte, the cathode composites were evaluated in terms of polarization losses with regard to a given electrolyte, i.e., GDC electrolyte. The polarization increased significantly with decreasing temperature and was critically dependent on the compositions of the composite cathodes. The optimized cathode composite was found to consist of GDC 50 wt% and LSCF 50 wt%; the corresponding normalized polarization loss was calculated to be 0.64 at $650^{\circ}C$.

$TiS_2$ Composite/SPE/Li Cell의 충방전에 따른 AC 임피던스의 변화 (Variation of AC Impedance of the $TiS_2$ Composite/SPE/Li Cell with Cycling)

  • 김종욱;구할본;문성인;윤문수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1034-1038
    • /
    • 1995
  • The purpose of this study is to research and develop $TiS_2$ composite cathode for lithium polymer battery(LPB). $TiS_2$ electrode represent a class of insertion positive electrode used in Li secondary batteries. In this study, we investigated preparation of $TiS_2$ composite cathode and AC impedance response of $TiS_2$ composite/SPE/Li cells as a function of state of charge(SOC) and cycling. The resistance of B type cell using $TiS_2PEO_8LiClO_4PC_5EC_5$ composite cathode was lower than that of A type cell using $TiS_2PEO$ composite cathode. The cell resistance of B type cell is high for the first few percent discharge, decreases for midium discharge and then increases again toward the end of discharge. We believe the magnitude of the cell resistance is dominated by passivation layer impedance and small cathode resistance. AC impedance results indicate that the cell internal resistance increase with cycling, and this is attributed to change of passivation layer impedance with cycling. The passivation layer resistance($R_f$) of B type cell decreases for the 2nd cycling and then increases again with cycling. Redox coulombic efficiency of B type cell was about 141% at 1st cycle and 100% at 12th cycle. Also, $TiS_2$ specific capacity was 115 mAh/g at 12 cycle.

  • PDF

High Electrochemical Activity of Bi2O3-based Composite SOFC Cathodes

  • Jung, Woo Chul;Chang, Yun-Jie;Fung, Kuan-Zong;Haile, Sossina
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.278-282
    • /
    • 2014
  • Due to high ionic conductivity and favorable oxygen electrocatalysis, doped $Bi_2O_3$ systems are promising candidates as solid oxide fuel cell cathode materials. Recently, several researchers reported reasonably low cathode polarization resistance by adding electronically conducting materials such as (La,Sr)$MnO_3$ (LSM) or Ag to doped $Bi_2O_3$ compositions. Despite extensive research efforts toward maximizing cathode performance, however, the inherent catalytic activity and electrochemical reaction pathways of these promising materials remain largely unknown. Here, we prepare a symmetrical structure with identically sized $Y_{0.5}Bi_{1.5}O_3$/LSM composite electrodes on both sides of a YSZ electrolyte substrate. AC impedance spectroscopy (ACIS) measurements of electrochemical cells with varied cathode compositions reveal the important role of bismuth oxide phase for oxygen electrocatalysis. These observations aid in directing future research into the reaction pathways and the site-specific electrocatalytic activity as well as giving improved guidance for optimizing SOFC cathode structures with doped $Bi_2O_3$ compositions.

고체산화물 연료전지용 (La, Sr)$MnO_3$ 양극에 대한 Co 첨가효과 (Effect of Co Dopant on the (La, Sr)$MnO_3$ Cathode for Solid Oxide Fuel Cell)

  • 김재동;김구대;이기태
    • 한국세라믹학회지
    • /
    • 제37권6호
    • /
    • pp.612-616
    • /
    • 2000
  • The effect of Co dopant on the (La, Sr)MnO3 cathode was investigated. La2Zr2O7 and SrZrO3 were formed as the reaction products between YSZ and LSMC. The reactivity of LSMC with YSZ increased with increasing Co content. However, the cathodic polarization resistance decreased with increasing Co doping. Therefore, doping Co at Mn site in the (La, Sr)MnO3 cathode was effective on controlling the polarization resistance of the cathode. The polarization property of LSMC-YSZ composite(60 wt%: 40 wt%) cathode was better than that of LSMC single cathode.

  • PDF

PLD 공정으로 제조된 LSM-YSZ 나노복합체층이 포함된 경사구조 박막 공기극을 적용한 SOFC의 성능 분석 (Performance of Solid Oxide Fuel Cell with Gradient-structured Thin-film Cathode Composed of Pulsed-laser-deposited Lanthanum Strontium Manganite-Yttria-stabilized Zirconia Composite)

  • 명두환;홍종일;황재연;이종호;이해원;김병국;조성걸;손지원
    • 한국세라믹학회지
    • /
    • 제48권6호
    • /
    • pp.487-492
    • /
    • 2011
  • The effect of the application of lanthanum strontrium manganite and yttria-stabilized zirconia (LSM-YSZ) nano-composite fabricated by pulsed laser deposition (PLD) as a cathode of solid oxide fuel cell (SOFC) is studied. A gradient-structure thin-film cathode composed of 1 micron-thick LSM-YSZ deposited at an ambient pressure ($P_{amb}$) of 200 mTorr; 2 micron-thick LSM-YSZ deposited at a $P_{amb}$ of 300 mTorr; and 2 micron-thick lanthanum strontium cobaltite (LSC) current collecting layer was fabricated on an anode-supported SOFC with an ~8 micron-thick YSZ electrolyte. In comparison with a 1 micron-thick nano-structure single-phase LSM cathode fabricated by PLD, it was obviously effective to increase triple phase boundaries (TPB) over the whole thickness of the cathode layer by employing the composite and increasing the physical thickness of the cathode. Both polarization and ohmic resistances of the cell were significantly reduced and the power output of the cell was improved by a factor of 1.6.

고체산화물 연료전지의 Samarium Oxide 혼합 공기극에 대한 열특성 분석 (Thermal Characteristics of Samarium-based Composite Cathode ($Sm_{0.5}Sr_{0.5}CoO_{3-\delta}/ Sm_{0.2}Ce_{0.8}O_{1.9}$) for Intermediate Temperature-operating Solid Oxide Fuel Cell)

  • 백승욱;배중면
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2021-2025
    • /
    • 2007
  • Performance of single cell at solid oxide fuel cell (SOFC) system is largely affected by electrocatalytic and thermal properties of cathode. Samarium-based perovskite oxide material is recently recognized as promising cathode material for intermediate temperature-operating SOFC due to its high electrocatalytic property. Perovskite structured $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$ and its composite material, $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}/Sm_{0.2}Ce_{0.8}O_{1.9}$ were investigated in terms of area specific resistance (ASR), thermal expansion coefficient (TEC), thermal cycling and long term performance. $Sm_{0.2}Ce_{0.8}O_{1.9}$ was used as electrolyte material. Electrochemical ac impedance spectroscopy (EIS) and dilatometer were used to measure the cathodic properties. Composite cathode ($Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$: $Sm_{0.2}Ce_{0.8}O_{1.9}$ = 6:4) showed a good ASR of 0.13${\Omega}$ $cm^2$ at 650$^{\circ}C$ and its TEC value was 12.3${\times}$10-6/K at 600$^{\circ}C$ which is similar to the value of ceria-based electrolyte of 11.9${\times}$10-6/K. Performance of composite cathode was maintained with no degradation even after 13 times thermal cycle test.

  • PDF

Electrochemical Properties of La4Ni3O10-GDC Composite Cathode by Facile Sol-gel Method for IT-SOFCs

  • Choi, Sihyuk;Kim, Guntae
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.265-270
    • /
    • 2014
  • Among the Ruddlesden-Popper series, $La_4Ni_3O_{10}$ has received widespread attention as a promising cathode material by reason of its favorable properties for realizing high performance of intermediate temperature solid oxide fuel cells (IT-SOFCs). The $La_4Ni_3O_{10}$ cathode is prepared using the facile sol-gel method by employing tri-blockcopolymer (F127) to obtain a single phase in a short sintering time. There are no reactions between the $La_4Ni_3O_{10}$ cathode and the $Ce_{0.9}Gd_{0.1}O_{2-\delta}$ (GDC) electrolyte upon sintering at $1000^{\circ}C$, indicating that the $La_4Ni_3O_{10}$ cathode has good chemical compatibility with the GDC electrolyte. The maximum electrical conductivity of $La_4Ni_3O_{10}$ reaches approximately 240 S $cm^{-1}$ at $100^{\circ}C$ and gradually decreases with increasing temperaturein air atmosphere. The area specific resistance value of $La_4Ni_3O_{10}$ composite with 40 wt% GDC is $0.435{\Omega}cm^2$ at $700^{\circ}C$. These data allow us to propose that the $La_4Ni_3O_{10}$-GDC composite cathode is a good candidate for IT-SOFC applications.

SOFC 용 LSCF/CGO 공기극의 제조 및 특성연구 (Synthesis and Characterization of LSCF/CGO Composite Used as SOFC Cathode Materials)

  • 박재량;임탁형;이승복;박석주;신동렬;송락현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.184-186
    • /
    • 2009
  • Composites of LSCF($La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ and CGO(gadolinium doped ceria) is an efficient candidate cathode material with CGO electrolytes. In this study, LSCF with exact perovskite structure was synthesized by using solid state reaction(SSR) method. The optimized temperature to synthesize $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ with rhombohedral structure. was $1100^{\circ}C$. The polarization resistance of the LSCF/CGO(50:50 wt.%) was smaller than those of other composite cathodes. The analysis of the EIS data of LSCF/CGO suggests that the diffusion and adsorption-desorption of oxygen can be the key process in the cathodic reaction of SOFC using LSCF/CGO as cathode material.

  • PDF

망간산화물 정극의 합제조성에 따른 전자전도특성 및 집전체와의 접착특성 (Characteristics of Electric Conductivity and Adhesion with Current Collector According to Composition of $LiMn_2O_4$ Cathode)

  • 엄승욱;도칠훈;문성인
    • 전기화학회지
    • /
    • 제4권1호
    • /
    • pp.1-5
    • /
    • 2001
  • 리튬이온전지용 정극활물질인$LiMn_2O_4$ 정극복합제의 조성을 최적화 하기 위하여 활물질, 도전재, 결합제 등의 비표면적 비율을 인자로 이용하였다. 결합제는 최소한의 양으로 사용되어 도포 후, 그리고 전해액에 함침 되었을 때에도 집전체와의 접착력을 유지할 수 있어야 하며, 이를 위해서는 $130^{\circ}C$의 열압착이 효과적이었다. 결합제의 최소 필요량은 활물질 및 도전재의 표면적에 따라 변하는 값으로, 활물질 및 도전재의 전체표면적에 대한 결합제의 무게비율이 $1.1\%$ 이상일 때 탈리가 일어나지 않았다. 정극의 전자전도도를 증가시킴으로서 eel떠 내부저항을 낮출 수 있었으며, 전자전도도를 0.019mS/cm에서 0.036mS/cm로 증가시킴에 따라 0.2C rate에서의 방전용량에 대한 2C rate에서의 방전용량의 비율을 $76\%$에서 $93\%$$17\%$개선할 수 있었다.

Mechanical Alloying Method로 제조된 고온수전해용 Ni/YSZ cermet의 제조 및 특성 (Synthesis and Characteristic of Ni/VSZ Cermet for High Temperature Electrolysis Prepared by Mechanical Alloying Method)

  • 채의석;홍현선;추수태
    • 한국수소및신에너지학회논문집
    • /
    • 제16권4호
    • /
    • pp.372-378
    • /
    • 2005
  • Ni/YSZ ($Y_2O_3$-stabilized $ZrO_2$) composite powder for a cathode material in high temperature electrolysis(HTE) was synthesized by a mechanical alloying method with Ni and YSZ powder. Microstructure of the composite and cell thickness for HTE reaction has been analyzed with various techniques of XRD, SEM to investigate effects of fabrication conditions. Employing the composite material, furthermore, the unit cell for HTE has been studied to evolve hydrogen from water. XRD patterns showed that the composites after wet mechanical alloying were composed of respective nano-sized crystalline Ni and YSZ. While ethanol as additive for mechanical alloying increased to $20\;{\mu}m$ of average particle size of the composites, alpha-terpineol effectively decreased to sub-micro size of that. This study has been found out the evolution of hydrogen by HTE reaction employing the fabricated cathode material, showing 1.4 ml/min of $H_2$ generation rate as increasing $20\;{\mu}m$ of cathode thickness.