• Title/Summary/Keyword: Composite Tubes

Search Result 281, Processing Time 0.022 seconds

Lateral impact behaviour of concrete-filled steel tubes with localised pitting corrosion

  • Gen Li;Chao Hou;Luming Shen;Chuan-Chuan Hou
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.615-631
    • /
    • 2023
  • Steel corrosion induces structural deterioration of concrete-filled steel tubes (CFSTs), and any potential extreme action on a corroded CFST would pose a severe threat. This paper presents a comprehensive investigation on the lateral impact behaviour of CFSTs suffering from localised pitting corrosion damage. A refined finite element analysis model is developed for the simulation of locally corroded CFSTs subjected to lateral impact loads, which takes into account the strain rate effects on concrete and steel materials as well as the random nature of corrosion pits, i.e., the distribution patterns and the geometric characteristics. Full-range nonlinear analysis on the lateral impact behaviour in terms of loading and deforming time-history relations, nonlinear material stresses, composite actions, and energy dissipations are presented for CFSTs with no corrosion, uniform corrosion and pitting corrosion, respectively. Localised pitting corrosion is found to pose a more severe deterioration on the lateral impact behaviour of CFSTs due to the plastic deformation concentration, the weakened confinement and the reduction in energy absorption capacity of the steel tube. An extended parametric study is then carried out to identify the influence of the key parameters on the lateral impact behaviour of CFSTs with localised pitting corrosion. Finally, simplified design methods considering the features of pitting corrosion are proposed to predict the dynamic flexural capacity of locally pitted CFSTs subjected to lateral impact loads, and reasonable accuracy is obtained.

Performance of composite frame consisting of steel beams and concrete filled tubes under fire loading

  • Shariati, Mahdi;Grayeli, Mohammad;Shariati, Ali;Naghipour, Morteza
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.587-602
    • /
    • 2020
  • In recent years, the composite columns have been widely used in the structures. These columns are mainly used to construct the structures with a large span and high floor height. Concrete filled tubes (CFTs) are a type of composite column, which are popular nowadays due to their numerous benefits. The purpose of this study is to investigate such frames at elevated temperatures. The method used in this research is based on section 2.2 of Eurocode 4. First, for the verification purpose, a comparison was made between the experimental results and the numerical model of the concrete filled tube. Then a composite frame was analyzed under fire temperature with different parameters. The results showed that the failure time decreased with increasing the friction of different models. Moreover, investigation of the concrete moisture content revealed that an increase in the concrete moisture content from 3% to 10% led to extended failure time for different models. For instance, in the second frame model, the failure time has increased up to 8%.

Large amplitude forced vibration of functionally graded nano-composite plate with piezoelectric layers resting on nonlinear elastic foundation

  • Yazdi, Ali A.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.203-213
    • /
    • 2018
  • This paper presents a study of geometric nonlinear forced vibration of carbon nano-tubes (CNTs) reinforcement composite plates on nonlinear elastic foundations. The plate is bonded with piezoelectric layers. The von Karman geometric nonlinearity assumptions with classical plate theory are employed to obtain the governing equations. The Galerkin and homotopy perturbation method (HPM) are utilized to investigate the effect of carbon nano-tubes volume fractions, large amplitude vibrations, elastic foundation parameters, piezoelectric applied voltage on frequency ratio and primary resonance. The results indicate that the carbon nano-tube volume fraction, applied voltage and elastic foundation parameters have significant effect on the hardening response of carbon nanotubes reinforced composite (CNTRC) plates.

Interlaminar Normal Stress Effects in Cylindrical Tubular Specimens of Graphite/Epoxy [±45]s Composites

  • An, Deuk Man
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.406-409
    • /
    • 2017
  • The thin-walled cylindrical tubes are frequently used for the evaluation of fatigue property of composites. But the curvature of the tubular specimen induces interlaminar normal stress which may affect the fatigue property. In this paper interlaminar normal stress effect on the fatigue behaviour of thin-walled graphite/epoxy tubes $[{\pm}45]_s$ composites was studied experimentally. It was concluded that the interlaminar normal stress induced by the curvature of the cylinder has no discernible effect on the fatigue life. But excessive internal pressure can produce the stiffness increase and this affects the fatigue life of the cylindrical tubular composite.

The Study on the Axial Collapse Characteristics of Composite Thin-Walled Members for Vehicles (차체구조용 복합재 박육부재의 축압괴 특성에 관한 연구)

  • 김영남;차천석;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.195-200
    • /
    • 2001
  • Composites have wide applications in aerospace vehicles and automobiles because of the inherent flexibility in their design for improved material properties. Composite tribes in particular, are potential candidates for their use as energy absorbing elements in crashworthiness applications due to their high specific energy absorbing capacity and the stroke efficiency. Their failure mechanism however is highly complicated and rather difficult to analyze. This includes fracture in fibres, in the matrix and in the fibre-matrix interface in tension, compression and shear. The purpose of this study is to investigate the energy absorption characteristics of CFRP(Carbon Fiber Reinforced Plastics) tubes on static and impact tests. Static compression tests have been carried out using the static testing machine and impact tests have been carried out using the vertical crushing testing machine. Interlaminar number affect the energy absorption capability of CFRP tubes. Also, theoretical and experimental have the same value.

  • PDF

Consolidation Analysis of Geotextile Tubes Filled with Highly Compressible Sludge Using Variable Coefficients of Consolidation

  • Kim, Hyeongjoo;Kim, Hyeongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.25-32
    • /
    • 2021
  • Geotextile tube technology has been perceived as an economical solution for liquid sludge treatment, and analyzing its consolidation behavior is necessary to be able to evaluate the dewatering capabilities of large geotextile tubes filled with contaminated soil, tailings, sewage sludge, and so on. The objectives of this study are to present a method that can adequately convey the consolidation behavior of geotextile tubes filled with sewage sludge, and to investigate the effects of various geotextile tube consolidation parameters. In this study, variable coefficients of consolidation are utilized to analyze the consolidation process of geotextile tubes filled with sewage sludge. The consolidation solution was verified by comparing the measured and predicted data from a hanging bag test conducted in the literature. After verifying the proposed solution, the consolidation parameters of a geotextile tube composed of a woven polypropylene outer layer and a non-woven polypropylene layer filled sewage sludge were obtained. Using the obtained parameters, the consolidation behavior of a large-scale composite geotextiles tube was predicted.

Application of steel-concrete composite pile foundation system as energy storage medium

  • Agibayeva, Aidana;Lee, Deuckhang;Ju, Hyunjin;Zhang, Dichuan;Kim, Jong R.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.753-763
    • /
    • 2021
  • Feasibility studies of a reinforced concrete (RC) deep pile foundation system with the compressed air energy storage (CAES) technology were conducted in previous studies. However, those studies showed some technical limitations in its serviceability and durability performances. To overcome such drawbacks of the conventional RC energy pile system, various steel-concrete composite pile foundations are addressed in this study to be utilized as a dual functional system for an energy storage medium and load-resistant foundation. This study conducts finite element analyses to examine the applicability of various composite energy pile foundation systems considering the combined effects of structural loading, soil boundary forces, and internal air pressures induced by the thermos-dynamic cycle of compressed air. On this basis, it was clearly confirmed that the role of inner and outer tubes is essential in terms of reliable storage tank and better constructability of pile, respectively, and the steel tubes in the composite pile foundation can also ensure improved serviceability and durability performances compared to the conventional RC pile system.

Statistical calibration of safety factors for flexural stiffness of composite columns

  • Aslani, Farhad;Lloyd, Ryan;Uy, Brian;Kang, Won-Hee;Hicks, Stephen
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.127-145
    • /
    • 2016
  • Composite column design is strongly influenced by the computation of the critical buckling load, which is very sensitive to the effective flexural stiffness (EI) of the column. Because of this, the behaviour of a composite column under lateral loading and its response to deflection is largely determined by the EI of the member. Thus, prediction models used for composite member design should accurately mirror this behaviour. However, EI varies due to several design parameters, and the implementation of high-strength materials, which are not considered by the current composite design codes of practice. The reliability of the design methods from six codes of practice (i.e., AS 5100, AS/NZS 2327, Eurocode 4, AISC 2010, ACI 318, and AIJ) for composite columns is studied in this paper. Also, the reliability of these codes of practice against a serviceability limit state criterion are estimated based on the combined use of the test-based statistical procedure proposed by Johnson and Huang (1997) and Monte Carlo simulations. The composite columns database includes 100 tests of circular concrete-filled tubes, rectangular concrete-filled tubes, and concrete-encased steel composite columns. A summary of the reliability analysis procedure and the evaluated reliability indices are provided. The reasons for the reliability analysis results are discussed to provide useful insight and supporting information for a possible revision of available codes of practice.

Push-out resistance of concrete-filled spiral-welded mild-steel and stainless-steel tubes

  • Loke, Chi K.;Gunawardena, Yasoja K.R.;Aslani, Farhad;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.823-836
    • /
    • 2019
  • Spiral welded tubes (SWTs) are fabricated by helically bending a steel plate and welding the resulting abutting edges. The cost-effectiveness of concrete-filled steel tube (CFST) columns can be enhanced by utilising such SWTs rather than the more conventional longitudinal seam welded tubes. Even though the steel-concrete interface bond strength of such concrete-filled spiral-welded steel tubes (CF-SWSTs) is an important consideration in relation to ensuring composite behaviour of such elements, especially at connections, it has not been investigated in detail to date. CF-SWSTs warrant separate consideration of their bond behaviour to CFSTs of other tube types due to the distinct weld seam geometry and fabrication induced surface imperfection patterns of SWTs. To address this research gap, axial push-out tests on forty CF-SWSTs were carried out where the effects of tube material, outside diameter (D), outside diameter to wall thickness (D/t), length of the steel-concrete interface (L) and concrete strength grade (f'c) were investigated. D, D/t and L/D values in the range 102-305 mm, 51-152.5 and 1.8-5.9 were considered while two nominal concrete grades, 20 MPa and 50 MPa, were used for the tests. The test results showed that the push-out bond strengths of CF-SWSTs of both mild-steel and stainless-steel were either similar to or greater than those of comparable CFSTs of other tube types. The bond strengths obtained experimentally for the tested CF-SWSTs, irrespective of the tube material type, were found to be well predicted by the guidelines contained in AISC-360.

Further analysis on the flexural behavior of concrete-filled round-ended steel tubes

  • Ding, Fa-xing;Zhang, Tao;Wang, Liping;Fu, Lei
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.149-169
    • /
    • 2019
  • A new form of composite column, concrete-filled round-ended steel tubes (CFRTs), has been proposed as piers or columns in bridges and high-rise building and has great potential to be used in civil engineering. Hence, the objective of this paper presents an experimental and numerical investigation on the flexural behavior of CFRTs through combined experimental results and ABAQUS standard solver. The failure mode was discussed in detail and the specimens all behaved in a very ductile manner. The effect of different parameters, including the steel ratio and aspect ratio, on the flexural behavior of CFRTs was further investigated. Furthermore, the feasibility and accuracy of the numerical method was verified by comparing the FE and experimental results. The moment vs. curvature curves of CFRTs during the loading process were analyzed in detail. The development of the stress and strain distributions in the core concrete and steel tube was investigated based on FE models. The composite action between the core concrete and steel tube was discussed and clarified. In addition, the load transfer mechanism of CFRT under bending was introduced comprehensively. Finally, the predicted ultimate moment according to corresponding designed formula is in good agreement with the experimental results.