• Title/Summary/Keyword: Composite Tubes

Search Result 279, Processing Time 0.019 seconds

CATALYTIC MEMBRANE REACTOR FOR DEYDROGENATION OF WATER VIA GAS-SHIFT

  • Tosti, Silvano;Castelli, Stefano;Violante, Vittorio
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.43-47
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen purification and recovery in th fusion reactor fuel cycle. The development of techniques for coating microporous ceramic tubes with Pd and Pd/Ag layers is described: composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20${\mu}{\textrm}{m}$) and rolling of thin metal sheet (Pd and Pd/ Ag membranes of 50-70 ${\mu}{\textrm}{m}$). Experimental results on electroless membranes showed that the metallic film presented some defects and the membranes had not complete hydrogen selectivity . Then the catalytic membrane reactors with electroless membranes can be applied for some industrial processes that do not require a complete separation of the hydrogen (i.e. in the dehydrogenation of hydrocarbons). The rolled thin Pd/Ag membranes separated the hydrogen from the other gas with a complete selectivity and exhibited a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests confirmed the good performances in terms of durability.

  • PDF

Influence of slenderness on axially loaded square tubed steel-reinforced concrete columns

  • Yan, Biao;Gan, Dan;Zhou, Xuhong;Zhu, Weiqing
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.375-388
    • /
    • 2019
  • This paper aims to investigate the axial load behavior and stability strength of square tubed steel-reinforced concrete (TSRC) columns. Unlike concrete filled steel tubular (CFST) column, the outer steel tube of a TSRC column is mainly used to provide confinement to the core concrete. Ten specimens were tested under axial compression, and the main test variables included length-to-width ratio (L/B) of the specimens, width-to-thickness ratio (B/t) of the steel tubes, and with or without stud shear connectors on the steel sections. The failure mode, ultimate strength and load-tube stress response of each specimen were summarized and analyzed. The test results indicated that the axial load carried by square tube due to friction and bond of the interface increased with the increase of L/B ratio, while the confinement effect of tube was just the opposite. Parametric studies were performed through ABAQUS based on the test results, and the feasibility of current design codes has also been examined. Finally, a method for calculating the ultimate strength of this composite column was proposed, in which the slenderness effect on the tube confinement was considered.

Axial impact behavior of confined concrete filled square steel tubes using fiber reinforced polymer

  • Zhang, Yitian;Shan, Bo;Kang, Thomas H.K.;Xiao, Yan
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.165-176
    • /
    • 2021
  • Existing research on confined concrete filled steel tubular (CCFT) columns has been mainly focused on static or cyclic loading. In this paper, square section CCFT and CFT columns were tested under both static and impact loading, using a 10,000 kN capacity compression test machine and a drop weight testing equipment. Research parameters included bonded and unbonded fiber reinforced polymer (FRP) wraps, with carbon, basalt and glass FRPs (or CFRP, BFRP, and GFRP), respectively. Time history curves for impact force and steel strain observed are discussed in detail. Experimental results show that the failure modes of specimens under impact testing were characterized by local buckling of the steel tube and cracking at the corners, for both CCFT and CFT columns, similar to those under static loading. For both static and impact loading, the FRP wraps could improve the behavior and increase the loading capacity. To analyze the dynamic behavior of the composite columns, a finite element, FE, model was established in LS-DYNA. A simplified method that is compared favorably with test results is also proposed to predict the impact load capacity of square CCFT columns.

Catalytic Membrane Reactor for Dehydrogenation of Water Via gas-Shift: A Review of the Activities for the Fusion Reactor Fuel Cycle

  • Tosti, Silvano;Rizzello, Claudio;Castelli, Stefano;Violante, Vittorio
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Pd-ceramic composite membranes and catalytic membrane reactors(CMR) have been studied for hydrogen and its isotopes (deuterium and tritium) purification and recovery in the fusion reactor fuel cycle. Particularly a closed-loop process has been studied for recovering tritium from tritiated water by means of a CMR in which the water gas shift reaction takes place. The development of the techniques for coating micro-porous ceramic tubes with Pd and Pd/Ag thin layers is described : P composite membranes have been produced by electroless deposition (Pd/Ag film of 10-20 $\mu$m) and rolling of thin metal sheets (Pd and Pd/Ag membranes of 50-70 $\mu$m). Experimental results of the electroless membranes have shown a not complete hydrogen selectivity because of the presence of some defects(micro-holes) in the metallic thin layer. Conversely the rolled thin Pd and Pd/ag membranes have separated hydrogen from the other gases with a complete selectivity giving rise to a slightly larger (about a factor 1.7) mass transfer resistance with respect to the electroless membranes. Experimental tests have confirmed the good performances of the rolled membranes in terms of chemical stability over several weeks of operation. Therefore these rolled membranes and CMR are adequate for applications in the fusion reactor fuel cycle as well as in the industrial processes where high pure hydrogen is required (i.e. hydrocarbon reforming for fuel cell)

  • PDF

Nonlinear free vibration analysis of functionally graded carbon nanotube reinforced fluid-conveying pipe in thermal environment

  • Xu, Chen;Jing-Lei, Zhao;Gui-Lin, She;Yan, Jing;Hua-Yan, Pu;Jun, Luo
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.641-652
    • /
    • 2022
  • Fluid-conveying tubes are widely used to transport oil and natural gas in industries. As an advanced composite material, functionally graded carbon nanotube-reinforced composites (FG-CNTRC) have great potential to empower the industry. However, nonlinear free vibration of the FG-CNTRC fluid-conveying pipe has not been attempted in thermal environment. In this paper, the nonlinear free vibration characteristic of functionally graded nanocomposite fluid-conveying pipe reinforced by single-walled carbon nanotubes (SWNTs) in thermal environment is investigated. The SWCNTs gradient distributed in the thickness direction of the pipe forms different reinforcement patterns. The material properties of the FG-CNTRC are estimated by rule of mixture. A higher-order shear deformation theory and Hamilton's variational principle are employed to derive the motion equations incorporating the thermal and fluid effects. A two-step perturbation method is implemented to obtain the closed-form asymptotic solutions for these nonlinear partial differential equations. The nonlinear frequencies under several reinforcement patterns are presented and discussed. We conduct a series of studies aimed at revealing the effects of the flow velocity, the environment temperature, the inner-outer diameter ratio, and the carbon nanotube volume fraction on the nature frequency.

Stress-strain Relations of Concrete Confined with Tubes Having Varying GFRP Layers (수적층 및 필라멘트 와인딩을 이용한 GFRP튜브로 구속된 콘크리트의 압축 거동)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.861-872
    • /
    • 2008
  • Concrete-filled glass fiber reinforced polymer tubes are often used for marine structures with the benefit of good durability and high resistance against corrosion under severe chemical environment. Current research presents results of a comprehensive experimental investigation on the behavior of axially loaded circular concrete-filled glass fiber reinforced polymer tubes. This paper is intended to examine several aspects related to the usage of glass fiber fabrics and filament wound layers used for outer shell of piles subjected to axial compression. The objectives of the study are as follows: (1) to evaluate the effectiveness of filament winding angle of glass fiber layers (2) to evaluate the effect of number of GFRP layers on the ultimate load and ductility of confined concrete (3) to evaluate the effect of loading condition of specimens on the effectiveness of confinement and failure characteristics as well, and (4) to propose a analytical model which describes the stress-strain behavior of the confined concrete. Three different types of glass fiber layers were chosen; fabric layer, ${\pm}45^{\circ}$ filament winding layer, and ${\pm}85^{\circ}$ filament winding layer. They were put together or used independently in the fabrication of tubes. Specimens that have various L:D ratios and different diameters have also been tested. Totally 27 GFRP tube specimens to investigate the tension capacity, and 66 concrete-filled GFRP tube specimens for compression test were prepared and tested. The behavior of the specimens in the axial and transverse directions, failure types were investigated. Analytical model and parameters were suggested to describe the stress-strain behavior of concrete under confinement.

Push-out tests and bond strength of rectangular CFST columns

  • Qu, Xiushu;Chen, Zhihua;Nethercot, David A.;Gardner, Leroy;Theofanous, Marios
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.21-41
    • /
    • 2015
  • Push-out tests have been conducted on 18 rectangular concrete-filled steel tubular (CFST) columns with the aim of studying the bond behaviour between the steel tube and the concrete infill. The obtained load-slip response and the distribution of the interface bond stress along the member length and around the cross-section for various load levels, as derived from measured axial strain gradients in the steel tube, are reported. Concrete compressive strength, interface length, cross-sectional dimensions and different interface conditions were varied to assess their effect on the ultimate bond stress. The test results indicate that lubricating the steel-concrete interface always had a significant adverse effect on the interface bond strength. Among the other variables considered, concrete compressive strength and cross-section size were found to have a pronounced effect on the bond strength of non-lubricated specimens for the range of cross-section geometries considered, which is not reflected in the European structural design code for composite structures, EN 1994-1-1 (2004). Finally, based on nonlinear regression of the test data generated in the present study, supplemented by additional data obtained from the literature, an empirical equation has been proposed for predicting the average ultimate bond strength for SHS and RHS filled with normal strength concrete.

Composite action of concrete-filled double circular steel tubular stub columns

  • Wang, Liping;Cao, Xing-xing;Ding, Fa-xing;Luo, Liang;Sun, Yi;Liu, Xue-mei;Su, Hui-lin
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.77-90
    • /
    • 2018
  • This paper presents a combined numerical, experimental, and theoretical study on the behavior of the concrete-filled double circular steel tubular (CFDT) stub columns under axial compressive loading. Four groups of stub column specimens were tested in this study to find out the effects of the concrete strength, steel ratio and diameter ratio on the mechanical behavior of CFDT stub columns. Nonlinear finite element (FE) models were also established to study the stresses of different components in the CFDT stub columns. The change of axial and transverse stresses in the internal and external steel tubes, as well as the change of axial stress in the concrete sandwich and concrete core, respectively, was thoroughly investigated for different CFDT stub columns with the same steel ratio. The influence of inner-to-outer diameter ratio and steel ratio on the ultimate bearing capacity of CFDT stub columns was identified, and a reasonable section configuration with proper inner-to-outer diameter ratio and steel ratio was proposed. Furthermore, a practical formula for predicting the ultimate bearing capacity was proposed based on the ultimate equilibrium principle. The predicted results showed satisfactory agreement with both experimental and numerical results, indicating that the proposed formula is applicable for design purposes.

Advanced Analysis of Connections to Concrete-Filled Steel Tube Columns using the 2005 AISC Specification (AISC 2005 코드를 활용한 콘크리트 충전 합성기둥의 해석과 평가)

  • Park, Ji-Woong;Rhee, Doo-Jae;Chang, Suong-Su;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.9-21
    • /
    • 2012
  • Concrete filled steel tube (CFT) columns have been widely used in moment resisting frame structures both in seismic zones. This paper discusses the design of such members based on the advanced methods introduced in the 2005 AISC Specification and the 2005 Seismic Provisions. This study focuses particularly on design following both linear and nonlinear methods utilizing equivalent static and dynamic loads for low-rise moment frames. The paper begins with an examination of the significance of pseudo-elastic design interaction equations and the plastic ductility demand ratios due to combined axial compressive force and bending moment in CFT members. Based on advanced computational simulations for a series of five-story composite moment frames, this paper then investigates both building performance and new techniques to evaluate building damage during a strong earthquake. It is shown that 2D equivalent static analyses can provide good design approximations to the force distributions in moment frames subjected to large inelastic lateral loads. Dynamic analyses utilizing strong ground motions generally produce higher strength ratios than those from equivalent static analyses, but on more localized basis. In addition, ductility ratios obtained from the nonlinear dynamic analysis are sufficient to detect which CFT columns undergo significant deformations.

Influence of loading method and stiffening on the behavior of short and long CFST columns

  • Shaker, Fattouh M.F.;Ghanem, Gouda M.;Deifalla, Ahmed F.;Hussein, Ibrahim S.;Fawzy, Mona M.
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.295-307
    • /
    • 2022
  • The objective of this research is to study experimentally the behavior of stiffened steel tubes (CFSTs). Considered parameters are stiffening methods by through-bolts or shear connectors with different configurations. In addition, the effect of global (ratio between length to diameter) and local (proportion between diameter to thickness) slenderness ratios are investigated. Load application either applied on steel only or both steel and concrete is studied as well. Case of loading on steel only happens when concrete inside the column shrinks. The purpose of the research is to improve the behavior of CFSTs by load transfer between them and different stiffening methods. A parametric experimental study that incorporates thirty-three specimens is carried out to highlight the impact of those parameters. Different outputs are recorded for every specimen such as load capacities, vertical deflections, longitudinal strains, and hoop strains. Two modes of failure occur, yielding and global buckling. Shear connectors and through-bolts improve the ultimate load by up to 5% for sections loaded at steel with different studied global slenderness and local slenderness equal 63.5. Meanwhile, shear connectors or through bolts increase the ultimate load by up to 6% for global slenderness up to 15.75 for sections loaded on composite with local slenderness equals 63.50. Recommendations for future design code development are outlined.