• Title/Summary/Keyword: Composite Structure

Search Result 3,388, Processing Time 0.029 seconds

Characterization of composite prepared with different mixing ratios of TiO2 to activated carbon and their photocatalytic activity

  • Chen, Ming-Liang;Bae, Jang-Soon;Ko, Young-Shin;Oh, Won-Chun
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.376-382
    • /
    • 2006
  • In this work, pitch/activated carbon/$TiO_2$ composite were prepared by $CCl_4$ solvent method with different mixing ratios. The BET surface area of pitch/activated carbon/$TiO_2$ composite has a significantly increase with increasing activated carbon content in pitch/activated carbon/$TiO_2$ composite. The surface structure and elemental compositions of the composite were studied by SEM and EDX, respectively. The SEM results were presented to the characterization of porous texture on the pitch/activated carbon/$TiO_2$ composite. And EDX data was shown the presence of C, O, S, Ti and other elements. The structural properties of the composite were studied in XRD measurements. The $TiO_2$ crystal phases of the pitch/activated carbon/$TiO_2$ composite had lots of rutile-type structure which transforms from anatase-type with a little of anatase-type structure. The photocatalytic activities of the composite were evaluated using a photo-decomposition method under UV lamp. The pitch/activated carbon/$TiO_2$ composites were observed better photocatalytic activity than that of pristine $TiO_2$.

A phase synthesis time reversal impact imaging method for on-line composite structure monitoring

  • Qiu, Lei;Yuan, Shenfang
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.303-320
    • /
    • 2011
  • Comparing to active damage monitoring, impact localization on composite by using time reversal focusing method has several difficulties. First, the transfer function of the actuator-sensor path is difficult to be obtained because of the limitation that no impact experiment is permitted to perform on the real structure and the difficulty to model it because the performance of real aircraft composite is much more complicated comparing to metal structure. Second, the position of impact is unknown and can not be controlled as the excitation signal used in the active monitoring. This makes it not applicable to compare the difference between the excitation and the focused signal. Another difficulty is that impact signal is frequency broadband, giving rise to the difficulty to process virtual synthesis because of the highly dispersion nature of frequency broadband Lamb wave in plate-like structure. Aiming at developing a practical method for on-line localization of impact on aircraft composite structure which can take advantage of time reversal focusing and does not rely on the transfer function, a PZT sensor array based phase synthesis time reversal impact imaging method is proposed. The complex Shannon wavelet transform is presented to extract the frequency narrow-band signals from the impact responded signals of PZT sensors. A phase synthesis process of the frequency narrow-band signals is implemented to search the time reversal focusing position on the structure which represents the impact position. Evaluation experiments on a carbon fiber composite structure show that the proposed method realizes the impact imaging and localization with an error less than 1.5 cm. Discussion of the influence of velocity errors and measurement noise is also given in detail.

Optimal Design of Thick Composite Wing Structure using Laminate Sequence Database (적층 시퀀스 데이터베이스를 이용한 복합재 날개 구조물의 최적화 설계)

  • Jang, Jun Hwan;Ahn, Sang Ho
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.52-58
    • /
    • 2017
  • This paper presents the optimum design methodology for composite wing structure which automatically calculates the safety margin using optimization framework integrating failure modes. Particularly, its framework is possible to optimize sizing procedure to prevent failure mode which has the greatest effect on reducing the sizing time of composite structure. The main failure mode was set as the first ply failure, buckling failure mode, and bolted joint stress field, and the margin was calculated to minimize the weight. The design variable is a laminate sequence database and the responses are strain, buckling, bolted joint stress field. The objective function is the mass of the wing structure. The results of buckling analysis were compared using the finite element model to verify the robustness and reliability of Composite Optimizer.

Study on Thermal Behavior of Unidirectional Composite Materials using Embedded Optical Fiber Sensors (삽입되어진 광섬유 센서를 이용한 일방향 적층 복합재료의 열적 거동 연구)

  • 김승택;전흥재;최흥섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.251-257
    • /
    • 1999
  • Smart structure that contains sensors, which are either embedded in a composite material or attached to a structure, is currently receiving considerable attention. Fiber Bragg grating sensor, one of the optical fiber sensors, has been widely used to sense strain and temperature for smart structures since both parameters change the resonant frequency of the grating. In this paper, according to the various heating and cooling conditions the thermal behavior of unidirectional composite material was monitored by embedding the fiber Bragg grating sensors in the longitudinal and transverse directions of unidirectional composites. The thermal behavior of unidirectional composite material was monitored for various heating and cooling rates and applied pressure. It was found that the thermal behavior was unaffected by pressure variations and heating and cooling rates applied to the composites. The thermal strains were measured by considering the shift in Bragg wavelength that was generated by the thermal expansion of composite specimen. The longitudinal and transverse C.T.E.'s were also obtained from the corresponding temperature-thermal strain curves.

  • PDF

Destructive Test to Ensure Integrity of Composite Structure (파괴시험을 통한 복합재 구조물의 건전성 입증)

  • Yang, Hyun-Deok;Jeong, Duck-Young;Lee, Kyung-Cheol;Jin, Young-Kwon
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.230-236
    • /
    • 2007
  • The quality control of composite structure includes inspection, testing and monitoring in all processes from receiving inspection to part fabrication. The purpose of these activities is to ensure that the design objectives are consistently achieved. The quality factors include material, receiving inspection, storage and shelf-life control, environmental control, testing, inspection and record control. This paper presents the process verification method using destructive test and quality control method in composite structure of aircraft. And it is believed that the destructive test will be basis to obtain a reliability of non-destructive test in complex composite structure and to ensure the design requirements in composite part.

  • PDF

Corner Inspection of Autoclave-cured L-shaped Composite Structure using Pulse-echo Rotation Scanning Scheme based on Laser Ultrasonic (레이저 초음파 기반 반사식 회전 검사 기법을 이용한 오토클레이브 가공 L 형 복합재 구조물의 모서리 검사)

  • Lee, Young-Jun;Lee, Jung-Ryul;Hong, Sung-Jin
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.246-250
    • /
    • 2018
  • In this paper, laser ultrasonic rotation scanning method was proposed to inspect and visualize defects in corner section of curved composite structure. L-shaped composite specimen with defects in its corner section were inspected using laser ultrasonic rotation scanning method. L-shaped specimens had artificial defects at three different depths to simulate delamination damage. All artificial defects were detected clearly in different time-of-flight according to their depths. Inspection result showed that the proposed method is suitable to inspect round corner section of curved composite structure without any special tools.

Resin Flow Analysis of RTM Manufacturing Method for Design of Composite Fluid Storage Tank Structure (복합재료 유체 저장 탱크 구조 설계를 위한 RTM 공법 수지 유동 해석)

  • Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.69-76
    • /
    • 2019
  • In this study, resin flow analysis of resin transfer moulding (RTM) method was performed for mould design of composite structure. The target composite structure was a tank used for fluid storage. Natural c fiber composite was adopted for composite structural design of the fluid storage tank. RTM was adopted for manufacturing of the tank using natural fiber composites. Resin flow analysis was performed to find the proper RTM conditions of the tank. The resin flow analysis was performed using the commercial FEM flow simulation software. After repeated analysis while changing the location of resin inlet and outlet, the proper resin filling time and pattern were found.

Random Vibration Characteristics of a Whole Structure Composite Satellite Having Hybrid Composite Sandwich Panels (하이브리드 복합재 샌드위치 패널로 구성된 전구조 복합재 위성의 랜덤진동 특성 평가)

  • Cho, Hee-Keun;Rhee, Ju-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.798-805
    • /
    • 2010
  • Whole composite structure small class (150kg) satellite, STSAT-3, was initially developed in Korea. The structure does have aluminum frames that support the structure, and it is composed of only composite sandwich panels. A number of electronic boxes and mechanical apparatus will be shielded within the compartments built up by the composite panels. This study focused on the random vibration responses of the satellite. For this objective, vibration tests and analyses have been successfully performed with respect to STM (structure and thermal model) of the satellite. Additionally, through the experiment and theoretical analyses, the both results' accuracy was verified by comparison each other.

Nonlinear Behavior of Composite Modular System's Joints (합성 모듈러 시스템 접합부의 비선형 거동 평가)

  • Choi, Young hoo;Lee, Jong il;Lee, Ho chan;Kim, Jin koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.153-160
    • /
    • 2021
  • The connection of the steel structure serves to transmit external forces to the main components. The same is true for the behavior of modular systems composed mainly of steel or composite members. In this study, the joint performance of the composite and steel modules proposed was evaluated. The analytical models of the two joint types were constructed and were subjected to cyclic loading to assess the safety and the energy dissipation capacity of the joint types. The analysis results of the joints showed that the joints of the modular systems remain stable when the joint rotation reached the seismic performance limit state of the 0.02 rad required for steel intermediate moment frame. It was also observed that the joint of the composite modular system showed higher energy dissipation capacity compared with the steel modular system.

Hybrid adaptive neuro-fuzzy inference system method for energy absorption of nano-composite reinforced beam with piezoelectric face-sheets

  • Lili Xiao
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.141-154
    • /
    • 2023
  • Effects of viscoelastic foundation on vibration of curved-beam structure with clamped and simply-supported boundary conditions is investigated in this study. In doing so, a micro-scale laminate composite beam with two piezoelectric face layer with a carbon nanotube reinforces composite core is considered. The whole beam structure is laid on a viscoelastic substrate which normally occurred in actual conditions. Due to small scale of the structure non-classical elasticity theory provided more accurate results. Therefore, nonlocal strain gradient theory is employed here to capture both nano-scale effects on carbon nanotubes and microscale effects because of overall scale of the structure. Equivalent homogenous properties of the composite core is obtained using Halpin-Tsai equation. The equations of motion is derived considering energy terms of the beam and variational principle in minimizing total energy. The boundary condition is assumed to be clamped at one end and simply supported at the other end. Due to nonlinear terms in the equations of motion, semi-analytical method of general differential quadrature method is engaged to solve the equations. In addition, due to complexity in developing and solving equations of motion of arches, an artificial neural network is design and implemented to capture effects of different parameters on the inplane vibration of sandwich arches. At the end, effects of several parameters including nonlocal and gradient parameters, geometrical aspect ratios and substrate constants of the structure on the natural frequency and amplitude is derived. It is observed that increasing nonlocal and gradient parameters have contradictory effects of the amplitude and frequency of vibration of the laminate beam.