• 제목/요약/키워드: Composite Sensor

검색결과 535건 처리시간 0.022초

Preparation of Ru-C Nano-composite Film by MOCVD and Electrode Properties for Oxygen Gas Sensor

  • Kimura, Teiichi;Goto, Takashi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.358-359
    • /
    • 2006
  • Ru-C nano-composite films were prepared by MOCVD, and their microstructures and their electrode properties for oxygen gas sensors were investigated. Deposited films contained Ru particles of 5-20 nm in diameter dispersed in amorphous C matrix. The AC conductivities associating to the interface charge transfer between Ru-C composite electrode and YSZ electrolyte were 100-1000 times higher than that of conventional paste-Pt electrodes. The emf values of the oxygen gas concentration cell constructed from the nano-composite electrodes and YSZ electrolyte showed the Nernstian theoretical values at low temperatures around 500 K. The response time of the concentration cell was 900 s at 500 K.

  • PDF

공정안전용 Polymer PTC 소재의 제조 및 특성 (Preparation and Properties of Polymer PTC Composites for Process Safety)

  • 강영구;조명호
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.101-108
    • /
    • 2003
  • Polymeric positive temperature coefficient(PTC) composites have been prepared by incorporating carbon black(CB) into high density polyethylene(HDPE), polyphenylene sulfide(PPS) and polybutylene terephthalate(PBT) matrices. A PTC effect was observed in the composite, caused by the large thermal expansion due to He consecutive melting of HDPE, PPS and PBT crystallites. This theory is based upon the premise that the PTC phenomenon is due to a critical separation distance between carbon particles in the polymer matrix at the higher temperature. The influence of PTC characteristics of the PPS/CB composite can be explained by DSC result. HDPE, one of prepared composition, exhibit the higher performance PTC behavior that decreaseing of negative temperature coefficient(NTC) effect and improved reproducibility by chemically crosslinking. Also, PBT/CB and PPS/CB composites exhibit the higher PTC peack temperature than HDPE/CB PTC composite, individually $200^{\circ}C$ and $230^{\circ}C$. These PTC composite put to good use in a number of safety application, such as self$.$controlled heater, over-current protectors, auto resettable switch, high temperature proctection sensor, etc.

다목적 복합 센서를 이용한 건설 장비 성과율 측정 알고리즘 개발 (Development of Algorithm for Measuring Performance Rate of Construction Equipment using a Multipurpose Composite Sensor)

  • 권재범;김춘학;김창원;조대구;조훈희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.9-10
    • /
    • 2012
  • Efficient operation of construction equipment has become more and more important in the competitive construction environment. Accurate measurement of performance rate of construction equipment is a critical factor for a construction project planning. However, it might be quite difficult to measure the performance rate due to diverse practical limitations such as continuously variable performance rate of construction equipment, considerable indirect cost, large construction field, and so on. Therefore, the purpose of this paper is to propose an automatic algorithm that measures a performance rate of construction equipment with a multipurpose composite sensor. It is expected that the algorithm compiles database on construction equipment and in advance, facilitates efficient operation of construction equipment.

  • PDF

해석적인 기법을 통한 FBG 센서의 스펙트럼 분석 및 수소고압용기의 센서 삽입위치 결정 (Spectrum analysis of the FBG sensor signal and location determination of FBG sensor into the $H_2$ pressure vessel)

  • 박상오;김철웅;박지상;김천곤
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.25-28
    • /
    • 2005
  • The optical fiber is known for the proper sensor which can accomplish the structural health monitoring, Fiber Bragg Grating sensors are being studied more than any other fiber optic sensors due to good multiplexing capabilities. But because the signal stability of FBG sensors can be influenced by the strain gradient, it needs to analyze signal of FBG sensors. Particularly acoording to strain gradient induced by structural geometry or cracks, the spectrum peak of the FBG sensor signal can be split easily. In this paper, the spectrum analysis of the FBG sensor signal was performed and the region of embedment of FBG sensors was determined in $H_2$ pressure vessel by numerical method.

  • PDF

Patch-type large strain sensor using elastomeric composite filled with carbon nanofibers

  • Yasuoka, Tetsuo;Shimamura, Yoshinobu;Todoroki, Akira
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권2호
    • /
    • pp.146-151
    • /
    • 2013
  • Carbon nanofibers (CNFs) are electrically conductive. When CNFs are used as fillers in resin, this electrical conductivity can be yielded without adversely affecting the mechanical properties of the resin. When an elastomer is adopted as the resin, a conductive elastomer can then be produced. Due to its flexibility and conductive properties, a large strain sensor based on changes in resistivity may be produced, for strain sensing in flexible structures. In this study, a patch-type large strain sensor using resistivity change in a CNF/elastomer composite was proposed. The measurement limits of the sensor were investigated experimentally, and the limit was found to be 40%, which greatly exceeded the limits of conventional metal-foiled strain gages. Also, the proposed CNF/elastomer large strain sensor can be used to measure flexible materials, while conventional strain gages cannot be used to measure such strains.

광섬유 센서를 이용한 섬유-금속 적층판의 손상 감지 (Damage Detection of Fiber-Metal Laminates Using Optical Fiber Sensors)

  • 양유창;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.161-164
    • /
    • 2002
  • Optical fiber vibrations sensors (OFVSs) and extrinsic Fabry-Perot interferometer (EFPI) were used in damage monitoring of fiber-metal laminates(FML). The optical fiber vibration sensor and EFPI were applied in order to detect and evaluate the strain, damage and failure of FML. Damages in composites, such as matrix cracks, delamination and fiber breakage may occur as a result of excessive load, fatigue and low-velocity impacts. Tensile test was performed with the measurement of optical signal and acoustic emission (AE). The signals of the optical fiber vibration sensor due to damages were quantitatively evaluated by wavelet transform. EFPI was less sensible to the damage signals compared with the optical fiber vibration sensor. It was found that damage information of comparable in quality to acoustic emission data could be obtained from the optical fiber vibration sensor signals.

  • PDF

광섬유 EFPI 센서를 이용한 실시간 고정밀 변위 측정 (Real-time Measurement of Precision Displacement using Fiber Optic EFPI Sensor)

  • 박상욱;김대현;김천곤;홍창선
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.154-157
    • /
    • 2003
  • Precision displacement of less than a few nm resolution was measured in real-time using fiber optic EFPI sensor. The novel method for real-time processing of analyzing EFPI output signal was developed and verified. Linearity in the mean values of interferometric light intensity among adjacent fringes was shown, and the sinusoidal approximation algorithm that estimates past and coming fringe values was verified through the linearity. Real-time signal processing program was developed, and the intensity signal of the EFPI sensor was transformed to the phase shift with this program. The resolution below 0.4 ~ 10 nm in the displacement range of $0 ~ 300\mu\textrm{m}$ was obtained by reducing the photodetector noise using low-pass filter and signal averaging. The nano-translation stage with a Piezo-electric actuator and the EFPI sensor system was designed and tested. This stage successfully reached to the desired destination in $15\mu\textrm{m}$ range within 1 nm accuracy.

  • PDF

구조물 미세크랙 예측용 CPGFRP센서 개발 (Development of CPGFRP Sensor for Fine Crack Detection of Structures)

  • 신순기;장창우;박윤한;김승언;김황수;이준희
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.119-122
    • /
    • 2004
  • A CPGFRP(Carbon Powder Glass Fiber Reinforced Plastics) sensor was fabricated for fine crack detection of structures. The electrical resistance of the sensor was measured on condition of various composition of carbon powders and thickness of bundle of glass fibers. The resistance was decreased as the increase of the content of carbon powders and the TEX of the glass fibers. In the case of loading on CPGFRP sensor, because inner crack was propagated, the part of percolation structures was disconnected. The sensor is superior to carbon fiber for the detecting ability of fine crack.

  • PDF

나노 센서를 이용한 구조물 건전성 감시 기법 (Structural Heal th Monitoring Based On Carbon Nanotube Composite Sensors)

  • 강인필;이종원;최연선
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.613-619
    • /
    • 2006
  • This paper introduces a new structural health monitoring using a nano sensor. The sensor is made of nano smart composite material based on carbon nanotubes. The nano sensor is fabricated as a thin and narrow polymer film sensor that is bonded or deposited onto a structure. The electrochemical impedance and dynamic strain response of the neuron change due to deterioration of the structure where the sensor is located. A network of the long nano sensorcan form a structural neural system to provide large area coverage and an assurance of the operational health of a structure without the need for actuators and complex wave propagation analyses that are used with other methods.

  • PDF

RFID/IMU/Encoder/근접센서를 활용한 무인지게차의 복합센서 시스템 연구 (Technology Development for Composite Sensor System of Automatic Guided Vehicle(AGV) Using RFID/IMU/Encoder/Proximity Sensor)

  • 신희영;최형식;김환성;정성훈
    • 한국항해항만학회지
    • /
    • 제37권3호
    • /
    • pp.309-313
    • /
    • 2013
  • 본 연구는 복합센서를 활용한 무인지게차의 주행 시스템에 대한 것이다. 무인지게차가 화물 이 적재를 위해 랙에 진입할 시 필요한 주행기술로 무인지게차의 위치 및 방향을 정확하게 파악하기 위해 RFID, IMU센서 및 근접센서로 구성된 복합센서 시스템을 이용하였고, 각 센서의 성능실험을 통해 특성을 파악한다. 이를 직접 설계/제작한 실험용 차량에 부착하여 복합센서 시스템을 적용하는 실험을 수행하고 이를 통해 개발된 시스템의 성능을 검증하였다.