• Title/Summary/Keyword: Composite Sensor

Search Result 535, Processing Time 0.026 seconds

Distributed Piezoelectric Sensor /Actuator Optimal Design for Active Vibration Control of Shell Structure (쉘 구조물의 진동제어를 위한 분포형 압전 감지기/작동기의 설계 최적화)

  • 황준석;목지원;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.154-157
    • /
    • 2000
  • Distributed piezoelectric sensor and actuator system has been designed for the active vibration control of shell structure. PVDF is used for the materials of sensor/actuator. To prevent the adverse effect of spillover, distributed modal sensor/actuator system is established. Although shell structure is three-dimensional structure, the PVDF sensor/actuator system can be treated as two-dimensional Finite element programs are developed to consider curved structures having PVDF modal sensor/actuator. The nine-node Mindlin shell element with five nodal degree of freedoms is used for finite element discretization. The electrode patterns and lamination angle of PVDF sensor/actuator are optimized to design the modal sensor/actuator system Genetic algorithm is used for optimization. Sensor is designed to minimize the observation spillover, and actuator is designed to minimize the system energy of the control modes under a given initial condition. Modal sensor/actuator for the first and second modes of singly curved cantilevered shell structure are designed using mentioned methods. Discrete LQG method is used as a control law. Experimental demonstrations of the active vibration control with designed sensor/actuator system have been performed successfully.

  • PDF

Selective NO2 Sensors Using MoS2-MoO2 Composite Yolk-shell Spheres

  • Jeong, Seong Yong;Choi, Seung Ho;Yoon, Ji-Wook;Won, Jong Min;Kang, Yun Chan;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.151-154
    • /
    • 2015
  • The gas sensing characteristic of $MoS_2-MoO_2$ composite yolk-shell spheres were investigated. $MoO_3$-carbon composite spheres were prepared by ultrasonic spray pyrolysis of aqueous droplets containing Mo-source and sucrose in nitrogen, which were converted into $MoO_3$ yolk-shell spheres by heat treatment at $400^{\circ}C$ in air. Subsequently, $MoS_2-MoO_2$ composite yolk-shell spheres were prepared by the partial sulfidation of $MoO_3$. The $MoS_2-MoO_2$ composite yolk-shell spheres showed relatively low and irreversible gas sensing characteristics at < $200^{\circ}C$. In contrast, the sensor showed high and reversible response (S=resistance ratio) to 5 ppm $NO_2$ (S=14.8) at $250^{\circ}C$ with low cross-responses (S=1.17-2.13) to other interference gases such as ethanol, CO, xylene, toluene, trimethylamine, $NH_3$, $H_2$, and HCHO. The $MoS_2-MoO_2$ composite yolk-shell spheres can be used as reliable sensors to detect $NO_2$ in a selective manner.

Chemical Sensors Using Polymer/Graphene Composite and The Effect of Graphene Content on Sensor Behavior (고분자/그래핀 복합재료의 센서 응용 및 그래핀 함량이 센서 거동에 미치는 영향)

  • Bae, Joonwon
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.25-29
    • /
    • 2020
  • In this study, a polymer/graphene hybrid composite was prepared by a simple roll-method and a simple sensor was produced by a convenient surface engineering procedure. The sensor performance was examined and the effect of graphene content on the sensing behavior was monitored. A polymer (polydimethylsiloxane, PDMS) paste containing graphene powder was prepared by a three-roll apparatus and polymer/graphene hybrid composite was produced by a two-roll technique. The sensing medium, cyclodextrin (CD) was introduced by a convenient bio-conjugation method. The efficacy of surface modification was confirmed by FT-IR spectroscopy and the ohmic relation was observed on composite surfaces. An analyte (e.g., methyl paraben, MePRB) at a 10 nM concnetration could be detected. When the graphene loading was low, the sensor performance was relatively poor. This was attributed to the absence of graphene alignments, which were observed for the composites having a high graphene loading. This indicates that the sensor performance was influenced by physical alignments of the filler. This article can provide important information for future research on developing sensing devices.

Strain Analysis in the Skin and Core Layers of Cross-Ply Composite Laminates Using A-EFPI Optical Fiber Sensor (광섬유 A-EFPI 센서를 이용한 직교적층 복합재료의 표피층 및 내부층의 변형률 해석)

  • 우성충;박래영;최낙삼;권일범
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.15-24
    • /
    • 2004
  • Longitudinal strains (${\varepsilon}_x$) of the core and skin layers in glass fiber reinforced plastic (GFRP) cross-ply composite laminates have been measured using the embedded optical fiber sensor of absolute extrinsic Fabry-Perot interferometer (A-EFPI). Transmission optical microscopy was used to investigate the damage behavior around the A-EFPI sensor. Foil-type strain gauges bonded on both the upper and lower surfaces were used for the measurement of the surface strains. It was shown that values of ${\varepsilon}_x$ in the interior of the skin layer and the core layer measured by embedded A-EFPI sensor were significantly higher than that of the specimen surface measured by strain gauges. The experimental results agreed well with those from finite element analysis on the basis of uniform stress model. Large strains in the core layer led to the occurrence of many transverse cracks which drastically reduced the strain at failure of optical fiber sensor embedded in the core layer.

An Implementation of High-performance Router Platform Supporting IPv6 that can High-speed Wired/wireless Interface and QoS (IPv6를 지원하는 초고속 유/무선 인터페이스와 QoS제공 가능한 고성능 라우터 플랫폼 개발)

  • Ryoo, Kwang-Seok;Seo, In-Ho;Shin, Jae-Heung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.229-235
    • /
    • 2017
  • Until now, a study on a ubiquitous sensor network has been mainly concentrated in the areas of sensor nodes, and as a results, technologies related with sensor node were greatly developed. Despite of many achievements on research and development for a sensor node, a ubiquitous sensor network may failed to establish the actual service environment because variety of restrictions. In order to provide a actual service using a ubiquitous sensor networks applied to many results on research and development for a sensor nodes, a study on a wired/wireless composite router must be carried out. However a study on a wired/wireless composite router is relatively very slow compared with the sensor node. In this study, developed a high-performance router platform supporting IPv6 that can provide high-speed wired/wireless interface and QoS, and it can provide the multimedia service Interlocking the wireless sensor network and the Internet network. To analysis a given network environment and to develop the appropriate hardware and software in accordance with this requirement.

The Analysis of Mechanism for the Gas Sensor of MWCNT/ZnO Composites Film Using the NOX Gas Detection Characteristics (NOX 가스 검출 특성을 이용한 MWCNT/ZnO 복합체 필름 가스 센서의 메커니즘 분석)

  • Son, Ju-Hyung;Kim, Hyun-Soo;Park, Yong-Seo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.188-192
    • /
    • 2018
  • In this study, we fabricated an $NO_X$ gas sensor using a composite film of multi-walled carbon nanotubes (MWCNT)/zinc oxide (ZnO). Carbon nanotubes (CNTs) show good electronic conductivity and chemical-stability, and zinc oxide (ZnO) is a wide band gap semiconductor with a large exciton binding energy. Gas sensors require characteristics such as high speed, sensitivity, and selectivity. The fabricated gas sensor was used to detect $NO_X$ gas at different $NO_X$ concentrations. The sensitivity of the gas sensor increased with increasing gas concentrations. Additionally, while changing the temperature inside the chamber containing the MWCNT/ZnO gas sensor, we obtained the sensitivity and normalized responses for detecting $NO_X$ gas in comparison to ZnO and MWCNT film gas sensors. From the experimental results, we confirmed that the gas sensor sensing mechanism was enhanced in the composite-film gas-sensor and that the electronic interaction between MWCNT and ZnO contributed to the improved sensor performance.

Active control of delaminated composite shells with piezoelectric sensor/actuator patches

  • Nanda, Namita;Nath, Y.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.211-228
    • /
    • 2012
  • Present study deals with the development of finite element based solution methodology to investigate active control of dynamic response of delaminated composite shells with piezoelectric sensors and actuators. The formulation is based on first order shear deformation theory and an eight-noded isoparametric element is used. A coupled piezoelectric-mechanical formulation is used in the development of the constitutive equations. For modeling the delamination, multipoint constraint algorithm is incorporated in the finite element code. A simple negative feedback control algorithm coupling the direct and converse piezoelectric effects is used to actively control the dynamic response of delaminated composite shells in a closed loop employing Newmark's time integration scheme. The validity of the numerical model is demonstrated by comparing the present results with those available in the literature. A number of parametric studies such as the locations of sensor/actuator patches, delamination size and its location, radius of curvature to width ratio, shell types and loading conditions are carried out to understand their effect on the transient response of piezoceramic delaminated composite shells.

Study on the Self Diagnosis of Reinforced Concrete Beam Retrofitted by Composite Materials with Optical Fiber Sensors (광섬유 센서를 이용한 복합재료로 보수보강된 철근콘크리트 보의 자기진단 기법개발)

  • 김기수;신영수;김종우;전재홍;조윤범
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.57-60
    • /
    • 2001
  • In order to extend the life time of building and civil infra-structure, nowadays, patch type fibrous composite materials are widely used. Retrofitted concrete columns and beams gain the stiffness and strength, but they lose toughness and show brittle failure. Usually, the cracks of concrete structures are visible with naked eyes and the status of the structure in the life cycle is estimated with visible inspection. After retrofitting of the structure, crack visibility is blocked by retrofitted composite materials. Therefore, structural monitoring after retrofitting is indispensible and self diagnosis method with optical fiber sensor is very useful. In this paper, We try to detect peel out effect and find the strain difference between main structure and retrofitting patch material when they separate each other.

  • PDF

Simultaneous Measurement of Strain and High Frequency Vibration of Composite Main Wing Model (복합재 주 날개 모델의 변형률과 진동의 동시 측정)

  • Song, Ji-Yong;Yoon, Hyuk-Jin;Park, Sang-Wuk;Park, Sang-Oh;Kim, Chon-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.185-189
    • /
    • 2005
  • For the simultaneous measurement of strain and vibration signal, a fiber Bragg grating sensor system with a dual demodulator was proposed. One demodulator using a tunable Fabry-Perot filter could measure low-frequency signal such as strain and the other demodulator using a coarse wavelength division multiplexer could detect high-frequency signal such as vibration signal using intensity demodulation method. In order to measure strain and vibration of the composite main wing model under static loading a real time monitoring program was developed. Also using intensity demodulation of CWDM, sensitivity and resolution at high frequency vibration were evaluated.

  • PDF

Vibration Control of Composite Thin-Walled Beams with a Tip Mass Via Fuzzy Algorithm and Piezoelectric Sensor and Actuator (끝단 질량을 가진 복합재료 박판 보의 퍼지기법과 압전 감지기/작동기를 이용한 진동제어)

  • 이윤규;강호식;송오섭
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.7-14
    • /
    • 2004
  • This paper deals with adaptive fuzzy logic controller design to achieve proper dynamic response of a composite thin-walled beam with a tip mass. In order to check the effectiveness of this controller, three different types of control logic are selected and applied. The adaptive control capabilities provided by a system of piezoactuators bonded or embedded into the structure are also implemented in the system. Results show that the fuzzy logic controller is more effective than the proportional or velocity feedback controller for the vibration control of composite thin-walled beam with a tip mass.