• Title/Summary/Keyword: Composite Sensor

Search Result 535, Processing Time 0.026 seconds

Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation

  • Karami, Behrouz;Shahsavari, Davood;Nazemosadat, Seyed Mohammad Reza;Li, Li;Ebrahimi, Arash
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.349-362
    • /
    • 2018
  • Thermal buckling behavior of porous functionally graded nanobeam integrated with piezoelectric sensor and actuator based on the nonlocal higher-order shear deformation beam theory is investigated for the first time. Its material properties are assumed to be temperature-dependent and varying along the thickness direction according to the modified power-law rule. Note that the porosity with even type is considered herein. The equations of motion are obtained through Hamilton's principle. The influences of several parameters (such as type of temperature distribution, external electric voltage, material composition, porosity, small-scale effect, Ker foundation parameters, and beam thickness) on the thermal buckling of FG nanobeam are investigated in detail.

Fiber Bragg Grating Strain Sensing in Reinforced Concrete Beams (광섬유 BRAGG GRATING SENSOR를 이용한 철근 콘크리트 보의 변형 측정)

  • 김지상;이상배;김남식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.423-428
    • /
    • 2001
  • Fiber Bragg Grating sensors currently attract a great deal of attentions, mainly due to their potentials in health monitoring for civil structures and composite materials. In this experimental study, the strains of reinforced concrete beams were measured to failure In order to verify the applicability of FBG(Fiber Bragg Grating) sensors. The FBG sensors were directly buried in concrete and attached to re-bars at the time of fabrication. In this experiment, the changes of strains in concrete and re-bars were successfully measured as the movement in wavelength of light signals. The FBG sensors may be a very effective tool to investigate the behavior inside of reinforced concrete structures.

  • PDF

Remote Impedance-based Loose Bolt Inspection Using a Radio-Frequency Active Sensing Node

  • Park, Seung-Hee;Yun, Chung-Bang;Inman, Daniel J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.217-223
    • /
    • 2007
  • This paper introduces an active sensing node using radio-frequency (RF) telemetry. This device has brought the traditional impedance-based structural health monitoring (SHM) technique to a new paradigm. The RF active sensing node consists of a miniaturized impedance measuring device (AD5933), a microcontroller (ATmega128L), and a radio frequency (RF) transmitter (XBee). A macro-fiber composite (MFC) patch interrogates a host structure by using a self-sensing technique of the miniaturized impedance measuring device. All the process including structural interrogation, data acquisition, signal processing, and damage diagnostic is being performed at the sensor location by the microcontroller. The RF transmitter is used to communicate the current status of the host structure. The feasibility of the proposed SHM strategy is verified through an experimental study inspecting loose bolts in a bolt-jointed aluminum structure.

Electromechanical Simulation of Cellulose Based Biomimetic Electro-Active Paper (생체모방종이작동기(Electro-Active Paper)의 전기기계적인 구동 시뮬레이션)

  • Jang, Sang-Dong;Kim, Heung-Soo;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.73-76
    • /
    • 2007
  • Electro-Active paper (EAPap) is a new smart material that has a potential to be used in biomimetic actuator and sensor. It is made by cellulose that is abundant material in nature. EAPap is fascinating with its biodegradability, lightweight, large displacement, high mechanical strength and low actuation voltage. Actuating mechanism of EAPap is known to be the combined effects of ion migration and piezoelectricity. However, the electromechanical actuation mechanisms are not yet to be established. This paper presents the modeling of the actuation behavior of water infused cellulose samples and their composite dielectric constants calculated by Maxwell-Wagner theory. Electro-mechanical forces were calculated using Maxwell stress tensor method. Bending deflection was evaluated from simple beam model and compared with experimental observation, which result good correlation with each other.

  • PDF

Self-Sensing Composites and Optimization of Composite Structures in Japan

  • Todoroki, Akira
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.155-166
    • /
    • 2010
  • I review research on self-sensing and structural optimizations of laminated carbon/epoxy composites in Japan. Self-sensing is one of the multiple functions of composites; i.e., carbon fiber is used as a sensor as well as reinforcement. I present a controversial issue in self-sensing and detail research results. Structural optimization of laminated CFRP composites is indispensable in reducing the weights of modern aerospace structural components. I present a modified efficient global search method using the multi-objective genetic algorithm and fractal branch and bound method. My group has focused its research on these subjects and our research results are presented here.

Study on Building a Structural Health Monitoring System for Uldolmok Tidal Current Power Plant (울돌목 시험조류발전소 구조물 안전감시시스템 구축에 관한 연구)

  • Yi, Jin-Hak;Park, Woo-Sun;Park, Jin-Soon;Lee, Kwang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.635-638
    • /
    • 2007
  • In this paper, we described the fundamental concepts of proposed structural health monitoring system for Uldolmok Tidal Current Power Plant focusing on the use of smart sensors including fiber bragg grating sensors and macro fiber composite sensors. The structural health monitoring system can play an important role to maintain the structural safety for offshore structures like as bridges and high-rise buildings. In the case of tidal current power plant, the monitoring system is much more important since the structures are usually constructed at the site with severer environmental loadings such as high current speed.

  • PDF

Phased Array Ultrasonic Application for Defects Estimation of FRP Box Member (FRP 박스부재의 결함평가를 위한 위상배열초음파 적용성 평가)

  • Kwak, Kae-Hwan;Yang, Dong-Woon;Kim, Ho-Sun;Lee, Ho-Hyun;Yun, Kuk-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.69-76
    • /
    • 2010
  • The structural material with the highest possibility of new materials that will be used in the future construction field is fiber reinforced polymer. The current studies on FRP members by using such excellent material characteristics mostly focused on stability, composite problem, and durability of FRP members. The initially constructed FRP members secure excellent stability and durability compared to reinforced concrete and steel materials, but measures for defections during the periodical inspection, methods for detecting breakages, and maintenance and reinforcement are not insufficient. Accordingly, this study proposed a measurement system using the FRP sensor to evaluate the safety of the FRP modular box member, and applied the phased array ultrasonic technique to detect the defects and damage likely to occur during the performance period.

Ionic polymer-metal composite as energy harvesters

  • Tiwari, Rashi;Kim, Kwang J.;Kim, Sang-Mun
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.549-563
    • /
    • 2008
  • The ability of an electroactive polymer, IPMC (Ionic Polymer Metal Composites,) to produce electric charge under mechanical deformations may be exploited for the development of next generation of energy harvesters. Two different electrode types (gold and platinum) were employed for the experiments. The sample was tested under dynamic conditions, produced through programmed shaking. In order to evaluate the potential of IPMC for dry condition, these samples were treated with ionic liquid. Three modes of mechanical deformations (bending, tension and shear) were analyzed. Experimental results clearly indicate that IPMCs are attractive applicants for energy harvesting, with inherent advantages like flexibility, low cost, negligible maintenance and virtually infinite longevity. Besides, preliminary energy harvesting model of IPMC has been formulated based upon the work of previous investigators (Newbury 2002, Newbury and Leo 2002, Lee, et al. 2005, Konyo, et al. 2004) and the simulation results reciprocate experimental results within acceptable error.

A Study on the development of developer for positive type presensitized off-set plates (포지용 오프셋 PS판의 현상액 개발)

  • 오세웅
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 1998
  • Recently the study of the application of liquid crystal in industrial fields has developed rapidly. It is well known that the encapsulated liquid crystal is advantageous than raw liquid crystal for protection of surface pollution. This paper describes a new class of thermal sensor. It is that the liquid crystal polymer composite(LCPC) films consisting of a continuous LC phase embedded in a three-dimensional network of polymer matrix are formed by photopolymerization-induced phase separation. In this works, it has been demonstrated that consiste of a 8:2 mixture of chiral nematic liquid crystal and HX-620 has the greatest domain and it was best discoloration.

  • PDF

Development of thermo-sensor used liquid crystal-polymer composite films (온도센서로서 액정잉크의 개발)

  • 남수용
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.16 no.1
    • /
    • pp.25-38
    • /
    • 1998
  • The developing agent is the materials which first acts on silver grain and make it into metallic silver by reducing reaction. There are several types in developing agent, and according to Lumiere-Andresen principle, substitution product which has amino or hydroxyl group in benzen nucleus has a developing power, but all reduing substances are not in used. In the developing effect, not only the role of developing agent but also that of assistant materials are important. But in this work, we have studied effect, change by lith developing agent which require high contrast image. We made an developing experiment after having manufactured developing solution used hydroquinone and another developing agents like chlorohydroquinone, pyrocatechol and pyrogallol as developing agent. And we added that did in addition of diethanolamine and ascorbic acid, and then we examined the possibility of use.

  • PDF