• Title/Summary/Keyword: Composite Plate

Search Result 1,781, Processing Time 0.028 seconds

Optimal design of a lightweight composite sandwich plate used for airplane containers

  • Al-Fatlawi, Alaa;Jarmai, Karoly;Kovacs, Gyorgy
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.611-622
    • /
    • 2021
  • Composite material-due to low density-causes weight savings, which results in lower fuel consumption of transport vehicles. The aim of the research was to change the existing base-plate of the aluminum airplane container with the composite sandwich plate in order to reduce the weight of the containers of cargo aircrafts. The newly constructed sandwich plate consists of aluminum honeycomb core and composite face-sheets. The face-sheets consist of glass or carbon or hybrid fiber layers. The orientations of the fibers in the face-sheets were 0°, 90° and ±45°. Multi-objective optimization method was elaborated for the newly constructed sandwich plates. Based on the design aim, the importance of the objective functions (weight and cost of sandwich plates) was the same (50%). During the optimization nine design constraints were considered: stiffness, deflection, facing stress, core shear stress, skin stress, plate buckling, shear crimping, skin wrinkling, intracell buckling. The design variables were core thickness and number of layers of the face-sheets. During the optimization both the Weighted Normalized Method of the Excel Solver and the Genetic Algorithm Solver of Matlab software were applied. The mechanical properties of composite face-sheets were calculated by Laminator software according to the Classical Lamination Plate Theory and Tsai-Hill failure criteria. The main added-value of the study is that the multi-objective optimization method was elaborated for the newly constructed sandwich structures. It was confirmed that the optimal new composite sandwich construction-due to weight savings and lower fuel consumption of cargo aircrafts - is more advantageous than conventional all-aluminum container.

A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass

  • Draiche, Kada;Tounsi, Abdelouahed;Khalfi, Y.
    • Steel and Composite Structures
    • /
    • v.17 no.1
    • /
    • pp.69-81
    • /
    • 2014
  • The novelty of this paper is the use of trigonometric four variable plate theory for free vibration analysis of laminated rectangular plate supporting a localized patch mass. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The Hamilton's Principle, using trigonometric shear deformation theory, is applied to simply support rectangular plates. Numerical examples are presented to show the effects of geometrical parameters such as aspect ratio of the plate, size and location of the patch mass on natural frequencies of laminated composite plates. It can be concluded that the proposed theory is accurate and simple in solving the free vibration behavior of laminated rectangular plate supporting a localized patch mass.

Nonlinear forced vibration of sandwich plate with considering FG core and CNTs reinforced nano-composite face sheets

  • Rostami, Rasoul;Rahaghi, Mohsen Irani;Mohammadimehr, Mehdi
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.185-193
    • /
    • 2020
  • Nonlinear vibration of sandwich plate with functionally graded material (FGM) core and carbon nano tubes reinforced (CNTs) nano-composite layers by considering temperature-dependent material properties are studied in this paper. Base on Classical plate theory (CPT), the governing partial differential equations of motion for sandwich plate are derived using Hamilton principle. The Galerkin procedure and multiple scales perturbation method are used to find relation between nonlinear frequency and amplitude of vibration response. The dynamic responses of the sandwich plate are also investigated in both time and frequency domains. Then, the effects of nonlinearity, excitation, power law index of FG core, volume fraction of carbon nanotube, the function of material variations of FG core, temperature changes, scale transformation parameter and damping factor on the frequency responses are investigated.

The characteristics of Lamb waves in a composite plate with thickness variation (두께변화가 있는 복합재 평판의 램파 전파특성)

  • Han Jeongho;Kim Chun-Gon
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.46-51
    • /
    • 2005
  • An active inspection system using Lamb waves for structural health monitoring was considered in this paper. In order to understand the characteristics of the Lamb waves propagating in a composite plate, the experiment was performed for a quasi-isotropic composite plate with thickness variation. Lamb waves were generated and received by the thin PZT transducers bonded on the surface. In this test, a simple new technique was tried for characterizing the Lamb waves propagating across the discontinuity due to the thickness variation. The results showed that Lamb waves were more sensitive to the thinner plate with faster group velocity and that the thickness change in composite plate was detectable. Consequently, the potential of applying this technique to structural health monitoring was verified.

Short- and long-term analyses of composite beams with partial interaction stiffened by a longitudinal plate

  • Ranzi, Gianluca
    • Steel and Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.237-255
    • /
    • 2006
  • This paper presents a novel analytical formulation for the analysis of composite beams with partial shear interaction stiffened by a bolted longitudinal plate accounting for time effects, such as creep and shrinkage. The model is derived by means of the principle of virtual work using a displacement-based formulation. The particularity of this approach is that the partial interaction behaviour is assumed to exist between the top slab and the joist as well as between the joist and the bolted longitudinal stiffening plate, therefore leading to a three-layered structural representation. For this purpose, a novel finite element is derived and presented. Its accuracy is validated based on short-and long-term analyses for the particular cases of full shear interaction and partial shear interaction of two layers for which solutions in closed form are available in the literature. A parametric study is carried out considering different stiffening arrangements to investigate the influence on the short-and long-term behaviour of the composite beam of the shear connection stiffness between the concrete slab and the steel joist, the stiffness of the plate-to-beam connection, the properties of the longitudinal plate and the concrete properties. The values of the deflection obtained from the finite element simulations are compared against those calculated using the effective flexural rigidity in accordance with EC5 guidelines for the behaviour of elastic multi-layered beams with flexible connection and it is shown how the latter well predicts the structural response. The proposed numerical examples highlight the ease of use of the proposed approach in determining the effectiveness of different retrofitting solutions at service conditions.

On the free vibration response of laminated composite plates via FEM

  • Sehoul, Mohammed;Benguediab, Soumia;Benguediab, Mohamed;Selim, Mahmoud M.;Bourada, Fouad;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.149-158
    • /
    • 2021
  • In this research paper, the free vibrational response of laminated composite plates is investigated using a non-polynomial refined shear deformation theory (NP-RSDT). The most interesting feature of this theory is the parabolic distribution of transverse shear deformations while ensuring the conditions of nullity of shear stresses at the free surfaces of the plate without requiring the Shear correction factor "Ks". A fourth-nodded isoparametric element with four degrees of freedom per node is employed for laminated composite plates. The numerical analysis of simply supported square anti-symmetric cross-ply and angle-ply laminated plate is carried out using a special discretization based on four-node finite element method which four degrees of freedom per node. Several numerical results are presented to show the effect of the coupling parameters of the plate such as the modulus ratios, the thickness ratio and the plate layers number on adimensional eigen frequencies. All numerical results presented using the current finite element method (FEM) is presented in 3D curve form.

Vibration Analysis of Stiffened Corrugated Composite Plates (보강된 적층 복합재료 주름판의 진동해석)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.377-382
    • /
    • 2020
  • The free vibration characteristics of corrugated laminated composite plates with axial stiffeners is investigated using the Rayleigh-Ritz method. The plate is stiffened by beams with open cross-section area. The equivalent homogenization model is used for the corrugated laminated composite plates. This homogenization model is treated a corrugated plate as an orthotropic plate that has different material properties in two perpendicular directions. The motion of equivalent plate is represented on the basis of the first order shear deformation theory (FSDT) to account for the effect of rotary inertia and transverse shear deformation. Stiffeners are considered as discrete elements to predict the local vibration mode to be generated by the presence of stiffeners. To validate the proposed analytical approach, natural frequencies and vibration mode shapes from the analytical method are compared with those from the FEA by ANSYS.

Analysis about Flexural Strength of Steel Plate-Concrete Composite Beam using Folded Steel Plate (Cap) as Shear Connector (절곡 강판(Cap)을 전단연결재로 사용한 강판-콘크리트 합성보의 휨강도 분석)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.481-492
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and shear connector to combine two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, the SPC beam was composed of folding steel plates and concrete, without a headed stud. The folding steel plate was assembled by a high strength bolt instead of welding. To improve the workability in a field construction, a hat-shaped cap was attached to the junction with a slab. Monotonic load testing under two points was conducted under displacement control mode to analyze the flexural strength of the SPC beam using a cap as the shear connector. Five specimens with shear connector types, protrusion length, and different thickness of steel plates were constructed and tested. The experimental results were analyzed through the relationship between the shear strength ratio and flexural strength in KBC 2009. The test results showed a shear strength ratio of more than 40 %. In the case of using a cap-like specimen as the shear connector, the flexural strength was 70% of the value calculated as a fully composite beam. In addition, the cap showed a smaller shear strength than the stud, but the cap served as a shear connection. When the thickness of the steel plate was taken as a variable, the steel plate exhibited a bending strength of approximately 70% compared to a fully formed steel plate, and exhibited similar deformation performance. Local buckling occurred due to incomplete composite behavior, but local buckling occurred at a 5% higher strength for a relatively thick steel plate. The buckling width also decreased by 15%.

Development of a PZT Fiber/Piezo-Polymer Composite Actuator with Interdigitated Electrodes

  • Kim, Cheol;Koo, Kun-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.666-675
    • /
    • 2002
  • Piezoelectric Fiber Composites with Interdigitated Electrodes (PFCIDE) were previously introduced as an alternative to monolithic wafers with conventional electrodes for applications of structural actuation. This paper is an investigation into the performance improvement of piezoelectric fiber composite actuators by changing the matrix material. This paper presents a modified micro-electromechanical model and numerical analyses of piezoelectric fiber/piezopolymer matrix composite actuator with interdigitated electrodes (PFPMIDE). Various concepts from different backgrounds including three-dimensional linear elastic and dielectric theories have been incorporated into the present linear piezoelectric model. The rule of mixture and the modified method to calculate effective properties of fiber composites were extended to apply to the PFPMIDE model. The new model was validated when compared with available experimental data and other analytical results. To see the structural responses of a composite plate integrated with the PFPMIDE, three-dimensional finite element formulations were derived. Numerical analyses show that the shape of the graphite/epoxy composite plate with the PFPMIDE may be controlled by judicious choice of voltages, piezoelectric fiber angles, and elastic tailoring of the composite plate.

Cyclic behaviour of end-plate beam-to-column composite joints

  • Simoes, Rui;da Silva, Luis Simoes;Cruz, Paulo J.S.
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.355-376
    • /
    • 2001
  • An experimental research program on end-plate beam-to-column composite joints under cyclic loading is presented. The major focus relates to the identification of the contribution of the concrete confinement in composite columns to the behaviour of the joint, on internal nodes and external nodes, together with an assessment of degradation of strength and stiffness in successive loading cycles. From the experimental results it was possible to identify the various failure modes and to fit the corresponding hysteretic curves to the Richard-Abbott and Mazzolani models. These curve-fitting exercises highlighted the need to adapt both models, either for improved ease of application, or to deal with some aspects previously not covered by those models.