• 제목/요약/키워드: Composite Flexure

검색결과 132건 처리시간 0.025초

FRP-콘크리트 합성 바닥판의 부모멘트부 거동 특성 (Characteristics of FRP-Concrete Composite Decks under Negative Flexure)

  • 김성태;조근희;박성용;조정래;김병석;신영석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.86-89
    • /
    • 2006
  • The flexural performance of FRP-concrete composite deck in the connection between decks is evaluated. FRP-concrete composite deck, an innovative system is composed of concrete in the top and FRP panel in the bottom. The experiments are carried out on specimens with different details, such as FRP module and reinforcement of FRP re-bars. As a result, we verify that the transverse connections between our FRP-concrete composite decks with presented details secure enough safety and serviceability.

  • PDF

복합재료 표면안테나 구조의 굽힘 피로특성 연구 (Bending Fatigue Characteristics of Surface-Antenna-Structure)

  • 김동현;황운봉;박현철;박위상
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.108-111
    • /
    • 2003
  • The Objective of this work was to design Surface Antenna Structure (SAS) and investigate fatigue behavior of SAS that was asymmetric sandwich structure. This term, SAS, indicates that structural surface becomes antenna. Constituent materials were selected considering electrical properties, dielectric constant and tangent loss as well as mechanical properties. For the antenna performance, SSFIP elements inserted into structural layers were designed for satellite communication at a resonant frequency of 12.5 GHz and final demonstration article was $16\;{\times}\;8$ array antenna. From electrical measurements, it was shown that antenna performances were in good agreement with design requirements. In cyclic 4-point bending, flexure behavior was investigated by static and fatigue test. Fatigue life curve of SAS was obtained. The fatigue load was determined experimentally at a 0.75(1.875kN) load level. SAS concept is the first serious attempt at integration for both antenna and composite engineers and promises innovative future communication technology.

  • PDF

경량화 CFRP 부재의 휨 강도와 강성 특성 (The Characteristics of Flexure Strength and Rigidity in Light-weight CFRP Members)

  • 양인영;김정호;김지훈
    • 한국정밀공학회지
    • /
    • 제25권11호
    • /
    • pp.95-99
    • /
    • 2008
  • Applications of composite materials in various engineering fields have been extended significantly. For being useful composite materials, we could modify the rigidity and strength characteristics of composite material according to structures and material direction. In this study, CFRP, which has been widely used in space leisure and general structural applications due to the weight, elasticity coefficient, high fatigue strength and lower thermal transformation ect, was selected. As the CFRP is an anisotropic material whose mechanical properties change with its stacking sequence or angle, special attention was given to the effects of the fiber orientation angle on the bending characteristics of CFRP fiat and CFEP square members. It's different on the each result of strength and rigidity of CFRP flat and CFRP square members.

Flexural strength of concrete-galvalume composite beam under elevated temperatures

  • Maryoto, Agus;Lie, Han Ay;Jonkers, Hendrik Marius
    • Computers and Concrete
    • /
    • 제27권1호
    • /
    • pp.13-20
    • /
    • 2021
  • In this paper, the elevated temperature on a concrete-galvalume composite beam's flexural strength based on the numerical and experimental methods is investigated. The strategy is to perform modeling and simulation of the flexural test based on finite element method (FEM) at room temperature and validate its results to experimental data at the same temperature. When the numerical model was proven valid, the model was utilized to simulate the effect of elevated temperatures on the composite element. The study concludes that the flexural strength of the beam decreases at higher temperature. Additionally, it was shown that cracking moments is susceptible to temperature fluctuation and the failure modes are sensitive concerning the elevated temperature.

비선형 단면해석을 통한 합성지하벽의 휨 거동 분석 및 설계 (Analysis and Design on the Flexural Behavior of Composite Basement Wall Through Nonlinear Sectional Analysis)

  • 서수연;김현우
    • 대한건축학회논문집:구조계
    • /
    • 제36권2호
    • /
    • pp.145-153
    • /
    • 2020
  • The purpose of this study is to investigate the effects of composition of underground structural wall and H-pile in soil cement. The results of previous experimental studies are re-analyzed and the nonlinear cross-sectional analyses of composite basement walls are performed to verify their nonlinear flexural behavior. Based on the study, it is explained how the gap deformation between H-Pile and RC wall should be considered in the design of flexure of composite underground walls. The nonlinear cross-sectional analysis shows that the load-displacement curves of composite basement wall specimens exhibiting flexural behavior exist between the results of the analysis of the complete and non-composite cases. When predicting the behavior of the composite basement wall by nonlinear cross-sectional analysis, the flexural behavior of the composite basement wall could be suitably predicted by considering the reduction of the composite ratio due to tensile stress acting on shear connectors.

Flexural behavior of partially-restrained semirigid steel connections

  • Campione, G.;Scibilia, N.
    • Steel and Composite Structures
    • /
    • 제1권4호
    • /
    • pp.441-458
    • /
    • 2001
  • We analyzed the experimental and theoretical behavior of a particular type of steel joint designed to connect beam to beam and able to transfer both shear forces and bending moments. This joint is characterized by the use of steel plates and bolts enclosed in the width of the beams. The experimental investigation was carried out characterizing the constituent materials and testing in flexure beams constituted by two portions of beams connected in the middle with the joint proposed. Connections having different characteristics in terms of thickness of plates, number and type of bolts were utilized. Flexure tests allow one to determine the loaddeflection curves of the beam tested and the moment-rotation diagrams of the connections, highlighting the strength and the strain capacity of the joints. The proposed analytical model allows one to determine the moment-rotation relationship of the connections, pointing out the influence of the principal geometrical and mechanic characteristics of single constituents on the full properties of the joint.

I-section flange compactness under minor axis flexure

  • Aktas, M.;Earls, C.J.
    • Steel and Composite Structures
    • /
    • 제6권4호
    • /
    • pp.335-351
    • /
    • 2006
  • The present paper hopes to elucidate the problem of determining if a given I-shaped cross-section is properly proportioned to accommodate sufficient plastic hinge rotation capacity to facilitate the redistribution of moments in a structural system as needed to accommodate the formation of a collapse mechanism. It might be tempting to believe that application of the limiting flange plate slenderness value for the case of major axis flexure are applicable in this case; since the pervasive belief is that this approach ought to be conservative. However, the present research study indicates that this is not the case and thus more sophisticated analysis techniques are required to better understand this case.

The comparison of relative reliability on biaxial and three point flexure strength methods of light curing composite resin

  • Seo, Deog-Gyu;Rho, Byoung-Duck
    • 대한치과보존학회:학술대회논문집
    • /
    • 대한치과보존학회 2003년도 제120회 추계학술대회 제 5차 한ㆍ일 치과보존학회 공동학술대회
    • /
    • pp.575-575
    • /
    • 2003
  • The majority of studies comparing the mechanical properties of brittle dental restorative materials now include use of the Weibull Modulus (m). This modulus is determined from analysis of the statistical distribution of strength measurements, which can be determined using a variety of methods, including biaxial flexure, 3pt bend and 4pt bend. In comparing materials it is usually implicitly assumed that the modulus (m) is independent of test method although it is recognised to be highly dependent on flaw distributions. However, in some cases flaw distributions can be modified by sample preparation and test method may modify stressing patterns. This study investigated the pattern of strength and m in two light setting materials.

  • PDF

Behaviours of steel-fibre-reinforced ULCC slabs subject to concentrated loading

  • Wang, Jun-Yan;Gao, Xiao-Long;Yan, Jia-Bao
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.407-416
    • /
    • 2019
  • Novel steel fibre reinforced ultra-lightweight cement composite (ULCC) with compressive strength of 87.3MPa and density of $1649kg/m^3$ was developed for the flat slabs in civil buildings. This paper investigated structural behaviours of ULCC flat slabs according to a 4-specimen test program under concentrated loading and some reported test results. The investigated governing parameters on the structural behaviours of the ULCC slabs include volume fraction of the steel fibre and the patch loading area. The test results revealed that ULCC flat slabs with and without flexure reinforcement failed in different failure mode, and an increase in volume fraction of the steel fibre and loading area led to an increase in flexural resistance for the ULCC slabs without flexural reinforcement. Based on the experiment results, the analytical models were developed and also validated. The validations showed that the analytical models developed in this paper could predict the ultimate strength of the ULCC flat slabs with and without flexure reinforcement reasonably well.

패들형 블레이드를 장착한 힌지없는 로터 시스템의 회전시험

  • 송근웅;김준호;김덕관
    • 항공우주기술
    • /
    • 제3권2호
    • /
    • pp.217-228
    • /
    • 2004
  • 본 논문은 복합재 패들형 블레이드를 장착한 축소 힌지없는 로터 시스템의 정지 및 전진 비행조건에 대한 회전시험 기술과 결과에 대한 것이다. 축소 로터 시스템은 실물크기 로터 시스템의 구조 자료를 이용하여 프루드 축소화하였고, 허브 flexure는 동일한 로터의 동력학적 특성을 기준으로 금속재와 복합재 2가지를 제작하였다. 2종류의 힌지없는 허브시스템을 KARI의 GSRTS에 장착후 회전 시험을 실시하여 로터 시스템의 리드래그 감쇠비와 공력 하중을 측정하였다. 리드래그 모드의 감쇠비를 산출하기 위해 MBA(Moving Block Analysis)기법을 사용하였고, 허브와 주축 사이에 6분력 발란스를 장착하고, 블레이드에 스트레인게이지를 부착하여 공력하중을 측정하였다. 시험은 제자리 및 전진비행 조건에 따라 지상 및 풍동에서 각각 수행하였다.

  • PDF