• 제목/요약/키워드: Composite Flexure

검색결과 133건 처리시간 0.02초

Perfobond Rib 전단연결재를 사용한 실험체의 전단강도 분석 (Analysis on Shear Force of Specimens Using Perfobond Rib Shear Connector)

  • 최진웅;박병건;김형준;정호성;박선규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.138-147
    • /
    • 2011
  • 본 연구의 목적은 직접전단응력 및 휨 전단응력의 비교분석을 통하여 Perfobond Rib 전단연결재를 사용한 구조물의 하중방향에 따른 전단응력 분석이다. 직접전단응력 분석을 위해서 5개의 변수로 Perfobond Rib 전단연결재 실험체 5개를 제작하고 Push-out Test를 실시하였다. 실험 후 Perfobond Rib 전단연결재의 전단저항 메커니즘을 규명하고, 직접전단응력에 영향을 미치는 주요 인자를 바탕으로 직접전단력을 산출할 수 있는 제안식을 제시하였다. 또한 휨 전단응력의 분석을 위해 강-콘크리트 합성 바닥판 실험체를 제작하고 정적 휨실험을 실시하였다. 정적 휨실험을 바탕으로 휨 거동특성을 분석하고 휨 전단응력을 계산하였다. 직접전단응력과 EN 1994-1-1을 통해 계산된 휨 전단응력을 비교하여 하중방향에 따른 전단저항응력에 대해서 분석을 하였다.

탄소나노튜브 첨가에 의한 치과용 글라스아이오노머 시멘트의 기계적 특성 (Effects of Carbon Nanotube Addition on the Mechanical Properties of Dental Glassionomer Cement)

  • 김동애;김한샘;신원상;이해형
    • 대한치과재료학회지
    • /
    • 제43권1호
    • /
    • pp.43-50
    • /
    • 2016
  • The aim of this study was to investigate the effect of multiwall carbon nanotube functionalized with carboxyl group (MWCNT-COOH) on the mechanical properties of dental glassionomer cement (GIC). MWCNT-COOH was prepared by the acid oxidative method. The MWCNT-COOH was incorporated into a commercial GIC powder or liquid at 0.5 wt% or 1.0 wt%. The net setting time of the cements was measured in accordance with ISO 9917 (Dental water-based cement). Specimens for compressive strength ($4mm{\varphi}{\times}6mm$), diametral tensile strength ($6mm{\varphi}{\times}4mm$) and flexure strength with modulus ($2mm{\times}2mm{\times}25mm$) were prepared by mixing with the cement liquid and kept in water bath of $(37{\pm}1)^{\circ}C$. Mechanical tests were conducted in 1 d, 7 d, and 14 days at a cross-head speed of 1 mm/min. Compressive strength of GIC mixed with 0.5 wt% MWCNT-COOH increased significantly at 7 d. However, overall mechanical properties of GIC modified with MWCNT were not significantly increased with a delayed setting time, in comparison with control cement. Overall results indicated that the MWCNT/GIC composite cements showed a limited strengthening effect for dental glassionomer cement.

Structural efficiency of various strengthening schemes for cold-formed steel beams: Effect of global imperfections

  • Dar, M. Adil;Subramanian, N.;Dar, A.R.;Majid, Muheeb;Haseeb, Mohd;Tahoor, Mugees
    • Steel and Composite Structures
    • /
    • 제30권4호
    • /
    • pp.393-403
    • /
    • 2019
  • Cold-formed steel (CFS) has a great potential to meet the global challenge of fast-track and durable construction. CFS members undergo large buckling instabilities due to their small wall thickness. CFS beams with corrugated webs have shown great resistance towards web buckling under flexure, when compared to the conventional I-sections. However, the magnitude of global imperfections significantly affects the performance of CFS members. This paper presents the first attempt made to experimentally study the effect of global imperfections on the structural efficiency of various strengthening schemes implemented in CFS beams with corrugated webs. Different strengthening schemes were adopted for two types of beams, one with large global imperfections and the other with small imperfections. Strength and stiffness characteristics of the beams were used to evaluate the structural efficiency of the various strengthening schemes adopted. Six tests were performed with simply supported end conditions, under four-point loading conditions. The load vs. mid-span displacement response, failure loads and modes of failure of the test specimens were investigated. The test results would compensate the lack of experimental data in this area of research and would help in developing numerical models for extensive studies for the development of necessary guidelines on the same. Strengthening schemes assisted in enhancing the member performance significantly, both in terms of strength and stiffness. Hence, providing an economic and time saving solution to such practical structural engineering problems.

Computational optimized finite element modelling of mechanical interaction of concrete with fiber reinforced polymer

  • Arani, Khosro Shahpoori;Zandi, Yousef;Pham, Binh Thai;Mu'azu, M.A.;Katebi, Javad;Mohammadhassani, Mohammad;Khalafi, Seyedamirhesam;Mohamad, Edy Tonnizam;Wakil, Karzan;Khorami, Majid
    • Computers and Concrete
    • /
    • 제23권1호
    • /
    • pp.61-68
    • /
    • 2019
  • This paper presents a computational rational model to predict the ultimate and optimized load capacity of reinforced concrete (RC) beams strengthened by a combination of longitudinal and transverse fiber reinforced polymer (FRP) composite plates/sheets (flexure and shear strengthening system). Several experimental and analytical studies on the confinement effect and failure mechanisms of fiber reinforced polymer (FRP) wrapped columns have been conducted over recent years. Although typical axial members are large-scale square/rectangular reinforced concrete (RC) columns in practice, the majority of such studies have concentrated on the behavior of small-scale circular concrete specimens. A high performance concrete, known as polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with non-metallic bars (glass reinforced polymer) has been studied. The material is described at micro and macro level, presenting the key physical and mechanical properties using different experimental techniques. Furthermore, a full description of non-metallic bars is presented to evaluate its structural expectancies, embedded in the polymer concrete matrix. In this paper, the mechanism of mechanical interaction of smooth and lugged FRP rods with concrete is presented. A general modeling and application of various elements are demonstrated. The contact parameters are defined and the procedures of calculation and evaluation of contact parameters are introduced. The method of calibration of the calculated parameters is presented. Finally, the numerical results are obtained for different bond parameters which show a good agreement with experimental results reported in literature.

대공간 목구조 건축의 건립 현황과 구조시스템 특성 분석 (A Study on the Construction Status and the Structural System Features of Wooden Large Space Buildings)

  • 이주나;이형훈;이승재
    • 한국공간구조학회논문집
    • /
    • 제22권3호
    • /
    • pp.15-24
    • /
    • 2022
  • In this research, the case of modern wooden structures since 1950 with span of 30m or more was investigated and analyzed the construction status and structural planning characteristics of wooden large space architecture. As a result, wooden large space buildings have built around Asia, North America, and Europe, in which cases of ice skating stadiums with span of 30m to 60m were concentrated. In the case of baseball parks and football stadiums, even a span of about 165m was built in a wooden structure. In addition, it was found that the structural systems used in wooden large space structures were a funicular arch and truss structure, in that cases, funicular arch system consisting of radial arrangements was used in the examples exceeded 150m and the two way truss system was also used in long span wooden structures exceeding 100m. As the truss structure with a tie-rod or the flexure+tension structure was partially investigated, it can be seen that various timber structural systems need to be devised and researched. Also, It was investigated that a technique in which some members of the truss are made of steel or a composite member of steel and timber is also possible to develop

Geopolymer concrete with high strength, workability and setting time using recycled steel wires and basalt powder

  • Ali Ihsan Celik;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • 제46권5호
    • /
    • pp.689-707
    • /
    • 2023
  • Geopolymer concrete production is interesting as it is an alternative to portland cement concrete. However, workability, setting time and strength expectations limit the sustainable application of geopolymer concrete in practice. This study aims to improve the production of geopolymer concrete to mitigate these drawbacks. The improvement in the workability and setting time were achieved with the additional use of NaOH solution whereas an increase in the strength was gained with the addition of recycled steel fibers from waste tires. In addition, the use of 25% basalt powder instead of fly ash and the addition of recycled steel fibers from waste tires improved its environmental feature. The samples with steel fiber ratios ranging between 0.5% and 5% and basalt powder of 25%, 50% and 75% were tested under both compressive and flexure forces. The compressive and flexural capacities were significantly enhanced by utilizing recycled steel fibers from waste tires. However, decreases in these capacities were detected as the basalt powder ratio increased. In general, as the waste wire ratio increased, the compressive strength gradually increased. While the compressive strength of the reference sample was 26 MPa, when the wire ratio was 5%, the compressive strength increased up to 53 MPa. With the addition of 75% basalt powder, the compressive strength decreases by 60%, but when the 3% wire ratio is reached, the compressive strength is obtained as in the reference sample. In the sample group to which 25% basalt powder was added, the flexural strength increased by 97% when the waste wire addition rate was 5%. In addition, while the energy absorption capacity was 0.66 kN in the reference sample, it increased to 12.33 kN with the addition of 5% wire. The production phase revealed that basalt powder and waste steel wire had a significant impact on the workability and setting time. Furthermore, SEM analyses were performed.

Assessment of the characteristics of ferro-geopolymer composite box beams under flexure

  • Dharmar Sakkarai;Nagan Soundarapandian
    • Advances in concrete construction
    • /
    • 제15권4호
    • /
    • pp.251-267
    • /
    • 2023
  • In this paper, an experimental investigation is carried out to assess the inherent self-compacting properties of geopolymer mortar and its impact on flexural strength of thin-walled ferro-geopolymer box beam. The inherent self-compacting properties of the optimal mix of normal geopolymer mortar was studied and compared with self-compacting cement mortar. To assess the flexural strength of box beams, a total of 3 box beams of size 1500 mm × 200 mm × 150 mm consisting of one ferro-cement box beam having a wall thickness of 40 mm utilizing self-compacting cement mortar and two ferro-geopolymer box beams with geopolymer mortar by varying the wall thickness between 40 mm and 50 mm were moulded. The ferro-cement box beam was cured in water and ferro-geopolymer box beams were cured in heat chamber at 75℃ - 80℃ for 24 hours. After curing, the specimens are subjected to flexural testing by applying load at one-third points. The result shows that the ultimate load carrying capacity of ferro-geopolymer and ferro-cement box beams are almost equal. In addition, the stiffness of the ferro-geoploymer box beam is reduced by 18.50% when compared to ferro-cement box beam. Simultaneously, the ductility index and energy absorption capacity are increased by 88.24% and 30.15%, respectively. It is also observed that the load carrying capacity and stiffness of ferro-geopolymer box beams decreases when the wall thickness is increased. At the same time, the ductility and energy absorption capacity increased by 17.50% and 8.25%, respectively. Moreover, all of the examined beams displayed a shear failure pattern.

Shear strengthening of seawater sea-sand concrete beams containing no shear reinforcement using NSM aluminum alloy bars

  • Yasin Onuralp Ozkilic;Emrah Madenci;Ahmed Badr;Walid Mansour;Sabry Fayed
    • Steel and Composite Structures
    • /
    • 제51권2호
    • /
    • pp.153-172
    • /
    • 2024
  • Due to the fast development of constructions in recent years, there has been a rapid consumption of fresh water and river sand. In the production of concrete, alternatives such as sea water and sea sand are available. The near surface mounted (NSM) technique is one of the most important methods of strengthening. Aluminum alloy (AA) bars are non-rusting and suitable for usage with sea water and sand concrete (SSC). The goal of this study was to enhance the shear behaviour of SSC-beams strengthened with NSM AA bars. Twenty-four RC beams were cast from fresh water river sand concrete (FRC) and SSC before being tested in four-point flexure. All beams are the same size and have the same internal reinforcement. The major factors are the concrete type (FRC or SSC), the concrete degree (C25 or C50 with compressive strength = 25 and 50 MPa, respectively), the presence of AA bars for strengthening, the direction of AA bar reinforcement (vertical or diagonal), and the AA bar ratio (0, 0.5, 1, 1.25 and 2 %). The beams' failure mechanism, load-displacement response, ultimate capacity, and ductility were investigated. Maximum load and ductility of C25-FRC-specimens with vertical and diagonal AA bar ratios (1%) were 100,174 % and 140, 205.5 % greater, respectively, than a matching control specimen. The ultimate load and ductility of all SSC-beams were 16-28 % and 11.3-87 % greater, respectively, for different AA bar methods than that of FRC-beams. The ultimate load and ductility of C25-SSC-beams vertically strengthened with AA bar ratios were 66.7-172.7 % and 89.6-267.9 % higher than the unstrengthened beam, respectively. When compared to unstrengthened beams, the ultimate load and ductility of C50-SSC-beams vertically reinforced with AA bar ratios rose by 50-120 % and 45.4-336.1 %, respectively. National code proposed formulae were utilized to determine the theoretical load of tested beams and compared to matching experimental results. The predicted theoretical loads were found to be close to the experimental values.

제V급 복합레진 수복물의 표면전색이 미세변연누출에 미치는 효과 (The Effect of Surface Sealing on the Microleakage of Class V Composite Resin Restorations)

  • 윤연희;현홍근;김영재;김정욱;장기택;이상훈;김종철;한세현
    • 대한소아치과학회지
    • /
    • 제34권3호
    • /
    • pp.359-369
    • /
    • 2007
  • 본 연구는 다양한 순환 및 시효 조건 하에서 제V급 복합레진 수복물의 표면전색이 미세변연누출에 미치는 효과에 대해 알아보고자 하였다. 100개의 건전한 소구치의 협면에 제V급 와동을 형성하고 제조사의 지시대로 광중합형 복합레진으로 수복하였다. 무작위로 나누어 표면전색을 시행하지 않는 I군과 표면을 산부식 후 표면전색을 시행한 II군으로 설정한 후 열순환(thermocycling)을 하였다. 각 군에서 하위군(A군= 열순환 외 다른 시효조건이 없는 군, B군=칫솔질군, C군=부하순환군, D군=칫솔질과 부하순환을 모두 시행한 군, E군=6개월간 증류수에 보관한 군)으로 나누어 각각에 맞는 시효조건을 시행하였다. 2% methylene blue 용액에 침윤시켜 변연의 미세누출정도를 평가하여 다음과 같은 결과를 얻었다. 1. 표면전색을 시행하지 않은 군의 교합변연과 치은변연에서 시효조건에 따른 미세누출의 유의한 차이는 보이지 않았다(p>0.05). 2. 표면전색을 시행한 군의 교합변연에서는 시효조건에 따른 미세누출의 유의한 차이가 없었다(p>0.05). 3. 표면전색을 시행한 군의 치은변연에서는 부하순환이나 6개월간 증류수에서 보관하는 시효과정을 거친 군에서 미세누출이 유의하게 크게 나타났다(p<0.05). 4. 시효조건이 없는 군과 칫솔질군의 경우, 표면전색을 시행한 군이 표면전색을 시행하지 않은 군에 비해 유의하게 적은 미세누출결과를 보였다(p<0.05). 5. 부하순환을 시행한 군과 6개월간 증류수에서 보관한 경우에는 표면전색을 시행한 군과 표면전색을 시행하지 않은 군 사이에 미세누출의 차이가 있었지만 유의차가 없었다(p>0.05). 따라서 이 연구의 결과는 변연부분의 미세간격으로 침투한 표면전색제가 처음에는 미세누출을 감소하는데 효과를 보여주었으나, 교합시 교두가 휘어져서 생기는 응력과 장기간의 수분흡수로 인한 변화를 견디기에 불충분함을 보여주었다.

  • PDF

하이브리드 PVA 섬유를 이용한 HPFRCCs의 휨 및 충격 성능 평가 (Flexural and Impact Resisting Performance of HPFRCCs Using Hybrid PVA Fibers)

  • 김영우;민경환;양준모;윤영수
    • 콘크리트학회논문집
    • /
    • 제21권6호
    • /
    • pp.705-712
    • /
    • 2009
  • 일반 콘크리트에 비해 많은 양의 섬유 혼입으로 인하여 상대적으로 연성적이고 인성적인 고성능 시멘트계 복합체는 극심한 하중을 받거나 내구성의 문제가 있는 곳에 사용될 수 있다. PVA 섬유를 사용하는 고성능 시멘트계 복합체의 경우 기존의 국내외 연구에 의하면, 2%의 섬유 혼입비에서 가장 높은 성능을 발휘한다고 알려져 있다. 따라서 이 연구에서는 PVA 섬유의 총 혼입비를 2%로 일정하게 유지시킨 채, 서로 다른 형상비를 가진 PVA 섬유를 사용하여 최적의 배합을 선정하고자 고성능 시멘트계 복합체의 휨 성능 실험을 실시하였다. 뿐만 아니라 이러한 고성능 시멘트계 복합체에 강섬유를 혼입하여 그 성능의 변화를 비교, 분석하였다. 또한 높은 변형률을 갖는 하중에 대하여 고성능 시멘트계 복합체의 거동을 확인하고자 충격 시험을 실시하였다. 이와 동시에 분사식 FRP를 도포한 고성능 시멘트계 복합체의 충격 저항 성능 역시 평가하였다. 위의 실험 결과 1.6%의 단섬유(REC15)와 0.4%의 장섬유 (RF4000)가 혼입된 시편이 휨 성능 및 충격 성능에 대해 탁월한 성능을 발휘하는 것을 확인할 수 있었다.