• Title/Summary/Keyword: Composite Culture System

Search Result 19, Processing Time 0.027 seconds

Functional Characteristics and Diversity of a Novel Lignocelluloses Degrading Composite Microbial System with High Xylanase Activity

  • Guo, Peng;Zhu, Wanbin;Wang, Hui;Lu, Yucai;Wang, Xiaofen;Zheng, Dan;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.254-264
    • /
    • 2010
  • To obtain an efficient natural lignocellulolytic complex enzyme, we screened an efficient lignocellulose-degrading composite microbial system (XDC-2) from composted agricultural and animal wastes amended soil following a long-term directed acclimation. Not only could the XDC-2 degrade natural lignocelluloses, but it could also secrete extracellular xylanase efficiently in liquid culture under static conditions at room temperature. The XDC-2 degraded rice straw by 60.3% after fermentation for 15 days. Hemicelluloses were decomposed effectively, whereas the extracellular xylanase activity was dominant with an activity of 8.357 U/ml on day 6 of the fermentation period. The extracellular crude enzyme noticeably hydrolyzed natural lignocelluloses. The optimum temperature and pH for the xylanase activity were $40^{\circ}C$ and 6.0. However, the xylanase was activated in a wide pH range of 3.0-10.0, and retained more than 80% of its activity at $25-35^{\circ}C$ and pH 5.0-8.0 after three days of incubation in liquid culture under static conditions. PCR-DGGE analysis of successive subcultures indicated that the XDC-2 was structurally stable over long-term restricted and directed cultivation. Analysis of the 168 rRNA gene clone library showed that the XDC-2 was mainly composed of mesophilic bacteria related to the genera Clostridium, Bacteroides, Alcaligenes, Pseudomonas, etc. Our results offer a new approach to exploring efficient lignocellulolytic enzymes by constructing a high-performance composite microbial system with synergistic complex enzymes.

A Study on Job Stress of Aircraft Composite Material Part Manufacturing Workers (항공기 복합소재 부품 제조업 종사자의 직무 스트레스 분석)

  • Yoon, Hoon-Yong;Lee, Choon-Jae;Jang, Jun-Hyuk
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.751-762
    • /
    • 2010
  • The purpose of this study was to investigate the job stress factors of aircraft composite material part manufacturing workers using survey based on 'Job stress factors evaluation tool for Koreans' that was developed by KOSHA in 2003. Two hundred and fifty workers participated in this study, and among them 204 responses were analyzed for this study due to the unreliability and insincerity of responses. The eight job stress factors which are physical environment, job autonomy, job insecurity, organizational system, workplace culture, unfair compensation, relationship conflict, and job requirement were analyzed. The results showed that the stress level of the six job stress factors which are physical environment, job autonomy, job insecurity, organizational system, workplace culture, unfair compensation was relatively higher than that of other industry workers. Generally, all eight job stress factors showed higher stress with temporary workers than with permanent workers, and especially job autonomy, job insecurity, organizational system, and unfair compensation factors showed statistically significant differences (p<0.05). Since the temporary workers are insecure with their job, weak position in organization, having little self-control for the job and lower pay level than that of permanent workers though the job is as same as permanent workers', the stress level of above job stress factors would be much higher than that of the other factors. The group of unsatisfactory with workplace showed higher job stress than group of satisfactory with workplace in all job stress factors, as expected, at the statistically significance level (p<0.05). From the results of this study, the work loss due to the job stress could be prevented, and accurate stress factors could be removed at the workplace. Also the job stress management program can be implemented to improve the work efficiency and the workers' quality of life.

Relationships among Gonad Weight, Liver Weight and Body Weight of Major, Common and Some Chinese Carps under Composite Culture System with Special Reference to Pond Fertilization

  • Mahboob, Shahid;Sheri, A.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.5
    • /
    • pp.740-744
    • /
    • 2002
  • The relationship of gonad weight and liver weight with body weight of six fish species viz; Catla catla, Labeo rohita, Cirrhina mrigala, Hypophthlamichthys molitrix, Ctenopharyngodon idella and Cyprinus carpio under the influence of artificial feed, broiler manure, buffalo manure, N:P:K (25:25:0) and a control pond were examined after a rearing period of one year. The positive relationship between gonad weight and body weight was significant which showed the dependence of gonadal development on body weight in all the six fish species. The currelation coefficients were higher in female fishes. However, the major carps had a much smaller proportional gonadal weight as compared with Chinese carps and a common carp due to their faster growth rate. The overall comparison of six fish species under different experimental treatments revealed that highest liver weight was observed for C. idella closely followed by C. carpio. The maximum correlation value was observed with H. molitrix under the broiler manure. The maximum Gonadosomatic Index (GSI) remained as 32.63 for C. carpio followed by C. idella. The maximum value for Hepatosomatic Index (HSI). remained 1.99 for C. idella followed by C. mrigala.

Dynamic stability analysis of laminated composite plates in thermal environments

  • Chen, Chun-Sheng;Tsai, Ting-Chiang;Chen, Wei-Ren;Wei, Ching-Long
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.57-79
    • /
    • 2013
  • This paper studies the dynamic instability of laminated composite plates under thermal and arbitrary in-plane periodic loads using first-order shear deformation plate theory. The governing partial differential equations of motion are established by a perturbation technique. Then, the Galerkin method is applied to reduce the partial differential equations to ordinary differential equations. Based on Bolotin's method, the system equations of Mathieu-type are formulated and used to determine dynamic instability regions of laminated plates in the thermal environment. The effects of temperature, layer number, modulus ratio and load parameters on the dynamic instability of laminated plates are investigated. The results reveal that static and dynamic load, layer number, modulus ratio and uniform temperature rise have a significant influence on the thermal dynamic behavior of laminated plates.

Seismic performance of CFS shear wall systems filled with polystyrene lightweight concrete: Experimental investigation and design methodology

  • Mohammad Rezaeian Pakizeh;Hossein Parastesh;Iman Hajirasouliha;Farhang Farahbod
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.497-512
    • /
    • 2023
  • Using light weight concrete as infill material in conventional cold-formed steel (CFS) shear wall systems can considerably increase their load bearing capacity, ductility, integrity and fire resistance. The compressive strength of the filler concrete is a key factor affecting the structural behaviour of the composite wall systems, and therefore, achieving maximum compressive strength in lightweight concrete while maintaining its lightweight properties is of significant importance. In this study a new type of optimum polystyrene lightweight concrete (OPLC) with high compressive strength is developed for infill material in composite CFS shear wall systems. To study the seismic behaviour of the OPLC-filled CFS shear wall systems, two full scale wall specimens are tested under cyclic loading condition. The effects of OPLC on load-bearing capacity, failure mode, ductility, energy dissipation capacity, and stiffness degradation of the walls are investigated. It is shown that the use of OPLC as infill in CFS shear walls can considerably improve their seismic performance by: (i) preventing the premature buckling of the stud members, and (ii) changing the dominant failure mode from brittle to ductile thanks to the bond-slip behaviour between OPLC and CFS studs. It is also shown that the design equations proposed by EC8 and ACI 318-14 standards overestimate the shear force capacity of OPLC-filled CFS shear wall systems by up to 80%. This shows it is necessary to propose methods with higher efficiency to predict the capacity of these systems for practical applications.

Design and Component of Transportation Culture Index Evaluation System (TCI 평가시스템 설계와 구성요소)

  • Nam, Doohee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.75-80
    • /
    • 2014
  • Transportation culture is an inseparable part of a group's overall culture. Since the term "transportation" is directly related to vehicular movement, I would like to propose the more general term: transportation culture and use that in the following paragraphs. Transportation culture is on one hand expressed by the consumers of transportation services reflecting their overall social culture and on the other hand taken into account by transportation professionals. Ministry of Land and Transportation conducted the Transportation Culture Index, a nationally representative survey, to assess a few key indicators of the degree to which ttransportation culture is valued and is being pursued every year. In this study, recommendation for TCI are explained based on theoretical framework and changing environment.

3D Bioprinted GelMA/PEGDA Hybrid Scaffold for Establishing an In Vitro Model of Melanoma

  • Duan, Jiahui;Cao, Yanyan;Shen, Zhizhong;Cheng, Yongqiang;Ma, Zhuwei;Wang, Lijing;Zhang, Yating;An, Yuchuan;Sang, Shengbo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.531-540
    • /
    • 2022
  • Due to the high incidence of malignant melanoma, the establishment of in vitro models that recapitulate the tumor microenvironment is of great biological and clinical importance for tumor treatment and drug research. In this study, 3D printing technology was used to prepare GelMA/PEGDA composite scaffolds that mimic the microenvironment of human malignant melanoma cell (A375) growth and construct in vitro melanoma micro-models. The GelMA/PEGDA hybrid scaffold was tested by the mechanical property, cell live/dead assay, cell proliferation assay, cytoskeleton staining and drug loading assay. The growth of tumor cells in two- and three-dimensional culture systems and the anti-cancer effect of luteolin were evaluated using the live/dead staining method and the Cell Counting Kit-8 (CCK-8) method. The results showed a high aggregation of tumor cells on the 3D scaffold, which was suitable for long-term culture. Cytoskeleton staining and immunofluorescent protein staining were used to evaluate the degree of differentiation of tumor cells under 2D and 3D culture systems. The results indicated that 3D bioprinted scaffolds were more suitable for tumor cell expansion and differentiation, and the tumor cells were more aggressive. In addition, luteolin was time- and dose-dependent on tumor cells, and tumor cells in the 3D culture system were more resistant to the drug.

Development and Application of a Novel Mammalian Cell Culture System for the Biocompatibility and Toxicity of Polymer Films and Metal Plate Biomaterials (고분자필름과 금속막 의료소재에 대한 생체적합성 및 독성 평가를 위한 새로운 세포배양시스템의 개발 및 적용)

  • Kwak, Moon Hwa;Yun, Woo Bin;Kim, Ji Eun;Sung, Ji Eun;Lee, Hyun Ah;Seo, Eun Ji;Nam, Gug Il;Jung, Young Jin;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.633-639
    • /
    • 2016
  • Biomaterials including polymer, metal, ceramic, and composite have been widely applied for medical uses as medical fibers, artificial blood vessels, artificial joints, implants, soft tissue, and plastic surgery materials owing to their physicochemical properties. However, the biocompatibility and toxicity for film- and plate-form biomaterials is difficult to measure in mammalian cells because there is no appropriate incubation system. To solve these problems, we developed a novel mammalian cell culture system consisting of a silicone ring, top panel, and bottom panel and we applied two polymer films (PF) and one metal plate (MP). This system was based on the principal of sandwiching a test sample between the top panel and the bottom panel. Following the assembly of the culture system, SK-MEL-2 cells were seeded onto Styela Clava Tunic (SCT)-PF, NaHCO3-added SCT (SCTN)-PF, and magnesium MP (MMP) and incubated at 37℃ for 24 hr and 48 hr. An MTT assay revealed that cell viability was maintained at a normal level in the SCT-PF culture group at 24 or 48 hr, although it rapidly decreased in the SCTN-PF culture group at 48 hr. Furthermore, the cell viability in the MMP culture group was very similar to that of the control group after incubation for 24 hr and 48 hr. Together, these results suggest the sandwich-type mammalian culture system developed here has the potential for the evaluation of the biocompatibility and toxicity of cells against PF- and MP-form biomaterials.

A Study on the Implementation of Historical and Cultural Information System based on Web GIS for Youngsan River Area (Web GIS 기반의 영산강유역권 역사문화정보시스템 구축 연구)

  • Jang, Mun-Hyun;Lee, Jeong-Rock
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.329-339
    • /
    • 2009
  • A historical and cultural map needs an overall reflection of the links based on time and space among the various composite factors, instead of requiring a simple collection of the respective relics in a particular region. The study of history, culture and living environment of river system area, a place that is known to as a cradle of civilization, will be able to undertake a role in the research and comparison with other cultural regions, reaching beyond the regional units until now and moreover investigation the international and intercontinental history of civilization. In this context, this research focuses on the establishment of a cultural information system for the public use and the insight to the regional identity and materialization of culture based on Korea's peculiar history and culture. Thus, the information system for Youngsan River area aims to create a form of electronic map that contains various cultural and historical information on river system area, which is a integrated information system based on Web GIS that is open to public use through the internet. The above mentioned system is a combined product from the basic research data on various fields of study, including archaeology, architecture, arts, ecological environment, history, folk customs, literature, and food, while it aims for not only its utilization in interdisciplinary studies but also creating new value as a public database. As a result, the expected effects due to the establishment of historical and cultural information system based on Web GIS of Youngsan River area are as follows: First, the study can contribute to verify a road map of the study on Youngsan River area. Second, it will take a role to stimulate the academical research on the dynamic structure and characteristics of the Youngsan River area. Third, we can also expect an effect of gaining a full foothold in providing an electronic academic source specialized for the study of the historical and cultural map.

  • PDF

Optimization of Medium Composition for Growth of Leuconostoc mesenteroides

  • Kim, Hyeon;Eom, Hyeon-Ju;Seo, Dong-Mi;Han, Nam-Su
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.153-156
    • /
    • 2003
  • The MRS medium is widely used as an optimized medium for the growth of Lactobacillus spp. and also used for the growth of Leuconostoc spp. Leuconostoc mesenteroides shows quite different physicochemical properties compared to Lactobacilli spp. and it is one of the major strain of kimchi fermenting microorganisms with its usefulness in our traditional foods and availability in biotechnology in the future, specifically tailor-made medium is necessary for the growth of Leuconostoc mesenteroides. Sequential experimental designs (Plackett-Burman, fractional factorial, steepest ascent, central composite design and response surface methodology) were introduced to optimize and improve the Leuconostoc medium. Fifteen medium ingredients were investigated and fructose, sodium acetate and ammonium citrate were determined to give a critical and positive effect for cell-growth. The yield of biomass using the optimal medium was improved more than that of the MRS medium and the result of fed-batch culture showed the capability of the improvement in cell mass similar to the E.coli system.

  • PDF