• Title/Summary/Keyword: Composite Casting

Search Result 327, Processing Time 0.023 seconds

Preparation and Characterization of TPA Captured CL-SPEEK Polymer Composite Membranes for Water Electrolysis (수전해용 술폰화 폴리에테르 에테르 케톤과 고정된 TPA 고분자 복합막의 제조 및 특성)

  • CHA, JINSAN;YOON, YOUNGYO;KIM, MINJIN;KIM, BOYOUNG;MOON, SANG-BONG;CHUNG, JANG-HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.17-23
    • /
    • 2017
  • Polyether ether ketone (PEEK) composite including tungstophosphoric acid(TPA) membranes have been intensively investigated for polymer electrolyte membrane water electrolysis (PEMWE) and thus covalently linked sulfonated polyether ether ketone (CL-SPEEK) with captured TPA composite membranes were prepared and characterized. Sulfonated polyether ether ketone (SPEEK) was prepared in sulfonation of PEEK and was cross-linked with 1,4 diiodobutane. The carbonyl group of SPEEK was reduced with $NaBH_4$ and 3-isocyanatepropyltriethoxysilane (ICPTES) was added. The TPA captured composite was prepared in reaction of TPA with 3-mercaptopropyltrime thoxysilane (MPTMS). The polymer composite membranes showed better thermostability and electrochemical properties than SPEEK. The membranes were prepared by sol-gel casting method. The polymer composite membrane featured 0.1285 S/cm of proton conductivity at $80^{\circ}C$ and outstanding durability.

Experimental and FE simulations of ferrocement columns incorporating composite materials

  • Shaheen, Yousry B.I.;Mahmoud, Ashraf M.;Refat, Hala M.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.155-171
    • /
    • 2017
  • This paper presents a proposed method for producing reinforced composite concrete columns reinforced with various types of metallic and non metallic mesh reinforcement. The experimental program includes casting and testing of twelve square columns having the dimensions of $100mm{\times}100mm{\times}1000mm$ under concentric compression loadings. The test samples comprise all designation specimens to make comparative study between conventionally reinforced concrete column and concrete columns reinforced with welded steel mesh, expanded steel mesh, fiber glass mesh and tensar mesh. The main variables are the type of innovative reinforcing materials, metallic or non metallic, the number of layers and volume fraction of reinforcement. The main objective is to evaluate the effectiveness of employing the new innovative materials in reinforcing the composite concrete columns. The results of an experimental investigation to examine the effectiveness of these produced columns are reported and discussed including strength, deformation, cracking, and ductility properties. Non-linear finite element analysis; (NLFEA) was carried out to simulate the behavior of the reinforced concrete composite columns. The numerical model could agree the behavior level of the test results. ANSYS-10.0 Software. Also, parametric study is presented to look at the variables that can mainly affect the mechanical behaviors of the model such as the change of column dimensions. The results proved that new reinforced concrete columns can be developed with high strength, crack resistance, and high ductility properties using the innovative composite materials.

Dehydration of Alcohol Solutions through Crosslinked Chitosan Composite Membranes - I. Preparation of Chemically Crosslinked Chitosan Composite Membranes and Ethanol Dehydration - (가교키토산 복합막을 통한 알콜수용액의 탈수 - I. 화학적가교를 통한 복합막의 제조와 에탄올의 탈수 -)

  • 이영무;남상용;오부근;이병렬;우동진;이규현;원장묵;하백현
    • Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.37-43
    • /
    • 1996
  • Chitosan composite membranes were prepared by casting chitosan solution onto porous polysulfone ultrafiltration membrane. Composite membranes to separate water from aq. ethanol solution were chemically crosslinked by using various crosslinking agent, glyoxal, terephthalaldehyde and glutaraldehyde. The morphology of surface crosslinked chitosan composite membranes were examined by scanning electron microscopy. ATR-FTIR was employed to confirm the crosslinking mechanism of surface crosslinked chitosan composite membranes. In the case of glutaraldehyde, optimum separation factor and decreasing trend of flux were shown.

  • PDF

Preparation and Characterization of SPEEK/Cellulose Polymer Composite Membranes for Water Electrolysis (수전해용 술폰화 폴리에테르 에테르 케톤과 셀룰로오스 고분자 복합막의 제조 및 특성)

  • SONG, YURI;CHA, JINSAN;YOON, YOUNGYO;MOON, SANG-BONG;CHUNG, JANG-HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.478-484
    • /
    • 2016
  • Polyether ether ketone (PEEK) composite membranes have been intensively investigated for polymer electrolyte membrane water electrolysis (PEMWE). Covalently linked (CL) sulfonated polyether ether ketone (SPEEK) and cellulose polymer composite membranes were prepared and characterized. Polyether ether ketone (PEEK) and cellulose were sulfonated and then were covalently linked by 1,4-diiodobutane to produce covalently linked SPEEK and cellulose polymer composite membranes. The composite membranes showed better thermostability and electrochemical properties than SPEEK. The membranes were prepared by sol-gel casting method. CL-SPEEK/Cellulose composite membrane featured 0.2453 S/cm of proton conductivity at $80^{\circ}C$ which was better than that of Nafion.

Flexural behavior of partially prefabricated partially encased composite beams

  • Liang, Jiong-feng;Zhang, Liu-feng;Yang, Ying-hua;Wei, Li
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.705-716
    • /
    • 2021
  • An innovative partially precast partially encased composite beam (PPECB) is put forward based on the existing research. In order to study the flexural performance of the new composite beam which has precast part and cast-in-place part, six prefabricated specimens and one cast-in-place specimen are designed with considering the influence of the production method, the steel flange thickness, the concrete strength grade and the stirrup process on the behavior of the composite beam. Through four points loading and test data collection and analysis, the behavior of partially prefabricated specimen is similar to that of cast-in-place specimen, and the casting method, the thickness of the steel flange, the concrete strength grade and the stirrup process have different influence on the crack, yield and peak load bearing capacity of the component. Finally, the calculation theory of plastic bending of partially precast partially encased concrete composite beams is given. The calculation results are in good agreement with the experimental results, which can be used for practical engineering theory guidance. This paper can provide reference value for further research and engineering application.

Parametric study on bearing capacity of CFST members considering the concrete horizontal casting effect

  • Sun, Wenbo;Luo, Yiqun;Zhou, Weijian;Huang, Wei
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.259-275
    • /
    • 2012
  • Concrete filled steel tubular (CFST) member has been widely used in the construction of high-rise buildings for its high axial bearing capacity. It can also be applied on long-span structures such as spatial structures or bridges not only for its high bearing capacity but also for its construction convenience. Concrete casting effect of CFST member is considered in the study of its bearing capacity in this paper. Firstly, in order to authenticate the applicability of constitutive relationship and yield criterion of steel and concrete based on FEM, two ANSYS models are built to simulate and compared with other's test. Secondly, in order to find the huge difference in bearing capacity due to different construction processes, two full-size CFST models are studied when they are horizontally cast and axially compressed. Finally, the effects of slenderness ratio (L/D) and confining parameter (D/t) of CFST members are studied to reveal the intrinsic links between bearing capacity and slenderness ratio or confining parameter.

The Effect of Annealing on sSEBS/Polyrotaxanes Electrolyte Membranes for Direct Methanol Fuel Cells

  • Won, Jong-Ok;Cho, Hyun-Dong;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.729-733
    • /
    • 2009
  • Solution casting films of sulfonated poly[styrene-b-(ethylene-r-butylene)-b-styrene] copolymer (sSEBS)-based composite membranes that contained different amounts of organic, nanorod-shaped polyrotaxane were annealed at various temperatures for 1 h. The films' properties were characterized with respect to their use as polymer electrolyte membranes in direct methanol fuel cells (DMFCs). Different aspect ratios of polyrotaxane were prepared using the inclusion-complex reaction between $\alpha$-cyclodextrin and poly(ethylene glycol). The presence of the organic polyrotaxane inside the membrane changed the morphology during the membrane preparation and reduced the transport of methanol. The conductivity and methanol permeability of the composite membranes decreased with increasing polyrotaxane content, while the annealing temperature increased. All of the sSEBS-based, polyrotaxane composite membranes annealed at $140^{\circ}C$ showed a higher selectivity parameter, suggesting their potential usage for DMFCs.

Synthesis and Characterization of Alumina Composite Membrane by Al Evaporation and Thermal Oxidation (알루미늄의 진공증발과 열산화에 의한 알루미나 복합분리막의 제조 및 특성분석)

  • 이동호;최두진;현상훈
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.349-358
    • /
    • 1995
  • The ceramic composite membrane was synthesized by thermal oxidation after evaporation of Al on the support prepared by slip casting process. Oxidation was performed at $700^{\circ}C$ and 80$0^{\circ}C$ under dry oxygen atmosphere. It was considered as optimum oxidation condition that the membrane showed a knudsen behaviro. A further oxidation resulted in an increase of gas permeability because top layer became densified. Then, a multi-layered composite membrane was synthesized through a sol-gel method, evaporation and thermal oxidation of Al coating processes. While the membrane was thermally stable up to 80$0^{\circ}C$, gas permeability was rapidly decreased even at a slight amount of deposition of Al.

  • PDF

Fabrication and Biomechanical Characteristics of Composite Ceramic Bone Scaffolds for Bone Tissue Engineering (골 생체조직공학을 위한 복합 세라믹 골 지지체의 제조와 생체역학적 특성)

  • Kim E. S.;Chung J. H.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.5 s.106
    • /
    • pp.457-466
    • /
    • 2004
  • Novel porous composite ceramic bone scaffolds composed of biodegradable PHBV(polyhydroxybutyrate-co-hydroxyvalerate) and TA(toothapatite) have been fabricated for bone tissue engineering by a modified solvent casting and particulate leach-ing method with salt-contained heat compression technique. The results of this study suggest that the PHBV-TA composite scaffold, especially the scaffold containing 30 weight$\%$ of TA may be a good candidate far bone tissue engineering of non-load bearing area in oral and maxillofacial region.

Preparation of Wool/Poly(ethylene terephthalate) Composite Membrane and It's Dyeablities (모/폴리에틸렌테레프탈레이트 복합막의 제조와 염색성)

  • Kim, Gong-Ju;Shin, Hye Kyong;Park Mi-Ra;Kim, Kyong-Hi;Jeon, Jae-Hong
    • Textile Coloration and Finishing
    • /
    • v.9 no.1
    • /
    • pp.23-32
    • /
    • 1997
  • Composite membranes having different mixing ratio of Wool(SCMK) and poly(ethylene terephthalate) (PET) were prepared by dissolving wool/PET in hexafluoro-2-propanol(HFIP), casting the obtained solution on a glass plate and evaporation the solvent in the presence and absence of an electric field. The internal structure of the prepared membrane was investigated using polarise microscope dyeing and dye permeation method. In the composite membrane prepared under electric field, both components were micro mixing, while in the membranes prepared under nonelectric field, the two components formed a random sea/island structure according to different mixing ratio. Such characteristic membrane structure was influenced the permeation behavior of C.I. Acid Red 118 through the membranes from an aqueous solution.

  • PDF