• Title/Summary/Keyword: Composite Case

Search Result 1,601, Processing Time 0.025 seconds

Explicit expressions for inelastic design quantities in composite frames considering effects of nearby columns and floors

  • Ramnavas, M.P.;Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.437-447
    • /
    • 2017
  • Explicit expressions for rapid prediction of inelastic design quantities (considering cracking of concrete) from corresponding elastic quantities, are presented for multi-storey composite frames (with steel columns and steel-concrete composite beams) subjected to service load. These expressions have been developed from weights and biases of the trained neural networks considering concrete stress, relative stiffness of beams and columns including effects of cracking in the floors below and above. Large amount of data sets required for training of neural networks have been generated using an analytical-numerical procedure developed by the authors. The neural networks have been developed for moments and deflections, for first floor, intermediate floors (second floor to ante-penultimate floor), penultimate floor and topmost floor. In the case of moments, expressions have been proposed for exterior end of exterior beam, interior end of exterior beam and both interior ends of interior beams, for each type of floor with a total of twelve expressions. Similarly, in the case of deflections, expressions have been proposed for exterior beam and interior beam of each type of floor with a total of eight expressions. The proposed expressions have been verified by comparison of the results with those obtained from the analytical-numerical procedure. This methodology helps to obtain the inelastic design quantities from the elastic quantities with simple calculations and thus would be very useful in preliminary design.

A study on the Room Acoustic Renovation of Music Room at Daihyun Elementary School in Yongin (초등학교 음악실의 실내음향 개선에 대한 연구 - 대현초등학교 사례를 중심으로 -)

  • Choi, Won-Gab;Shin, Jic-Soo
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.13 no.1
    • /
    • pp.17-25
    • /
    • 2006
  • Elementary school classroom designs have been developed toward open education system to provide students diverse and improved educational environments since the early of 1990 in Korea. Unfortunately, the quality of music room has not still shown dramatic improvements due to the lack of the acoustical knowledges of architects. This report aims to investigate typical acoustic quality of previous or current music room of elementary schools and show new acoustic treatment technologies to improve the room acoustic of music room by adapting composite perforated panel system and diffusion technology. The music room at Daihyun Elementary school in Yongin was chosen as a case study of this report. The music room was measured to be analyzed using field measurements and the acoustical specifications of composite perforated panel systems and kinds of diffusors were set. Acoustic measurements were performed after the renovation to show the differences between previous room acoustic and after the acoustic renovations. As the result, the case study has shown that the new composite perforated panel systems and diffusion surfaces lowered reverberation time at proper level along with improving the clarity of music, RASTI, and spatial impressions. Also, acoustic interferences such as comb filtering and flutter echoes have been controlled dramatically by diffusive surfaces. The study shows music rooms in elementary schools, middle and high schools can be improved by adapting composite perforated panel systems and diffusors.

The Confinement Effect on the Shear Stiffness of Inner Shear Connections in Concrete-filled Steel-Concrete Composite Girder (콘크리트로 충지된 강.콘크리트 합성거더의 구속효과가 내부 전단연결부 강도에 미치는 영향)

  • Lee, Sang-Yoon;Kim, Jung-Ho;Lee, Seung-Yong;Park, Kyung-Hoon;Lee, Young-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.229-232
    • /
    • 2008
  • Researches on the steel-concrete composite girder filled with plain concrete have been being actively performed on the grounds that this type of girder has constructional, structural and aesthetical benefits. As a part of studies on the characteristics of inner shear connections in the concrete-filled steel-concrete composite girder with plain concrete, the confinement effect on the stiffness of inner shear connections was examined in this study. In the case of concrete-filled steel-concrete composite girder, it can be expected that the stiffness of shear connections may be increased in comparison with the case not confined. Therefore, the experimental studies were performed with the confinement effect as a parameter, and the results are discussed in this paper.

  • PDF

Analysis of Structural Performance of Wood Composite I and Box Beam on Cross Section Component (I) - Calculation and Analysis of Flexural Rigidity and Deflection - (단면구성요소(斷面構成要素)에 관(關)한 목질복합(木質複合) I및 Box형 보의 구조적(構造的) 성능(性能) 분석(分析) (I))

  • Oh, Sei-Chang;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.40-55
    • /
    • 1991
  • To investigate the influence of cross section geometries on the behavior of composite beams in the case of small span to depth ratio and deep beams. the static flexural behavior of composite I-beams and Box- beams was evaluated. 12 types of composite I -beams composed of LVL flanges and particleboard or plywood web and 3 types of composite Box-beams composed of LVL flanges and plywood web were tested under one-point loading. The load-deflection curves were almost linear to failure, therefore, the behavior of tested composite beams was elastic. The theoretical flexural rigidity of composite beams was calculated and compared with observed flexural rigidity. The highest value was found in I-W type beams and the lowest value was found in G-P type beams. The difference between theoretical and observed flexural rigidity was small. Theoretical total deflection of tested composite beams was calculated using flexural rigidity and compared with actual deflection. Shear deflection of these beams was evaluated by the approximation method, solid crosss section method and elementary method. The difference between actual deflection and expected deflection was not found in D, E and F type beams. This defference was small in G, H and I type beams or Box-beam.

  • PDF

A study of fracture of a fibrous composite

  • Mirsalimov, Vagif M.;Hasanov, Shahin H.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.585-598
    • /
    • 2020
  • We develop design model within which nucleation and propagation of crack in a fibrous composite is described. It is assumed that under loading, crack initiation and fracture of material happens in the composite. The problem of equilibrium of a composite with embryonic crack is reduced to the solution of the system of nonlinear singular integral equations with the Cauchy type kernel. Normal and tangential forces in the crack nucleation zone are determined from the solution of this system of equations. The crack appearance conditions in the composite are formed with regard to criterion of ultimate stretching of the material's bonds. We study the case when near the fiber, the binder has several arbitrary arranged rectilinear prefracture zones and a crack with interfacial bonds. The proposed computational model allows one to obtain the size and location of the zones of damages (prefracture zones) depending on geometric and mechanical characteristics of the fibrous composite and applied external load. Based on the suggested design model that takes into account the existence of damages (the zones of weakened interparticle bonds of the material) and cracks with end zones in the composite, we worked out a method for calculating the parameters of the composite, at which crack nucleation and crack growth occurs.

Evaluation on structural behaviors of prestressed composite beams using external prestressing member

  • Ahn, Jin-Hee;Jung, Chi-Young;Kim, Sang-Hyo
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.247-275
    • /
    • 2010
  • In this study, experimental, numerical, and analytical approaches were carried out to evaluate the behavior and prestressing effect of prestressed composite beam by external tendon and cover plate. Behavior of prestressed composite beam, load-carrying capacity, effects of prestressing, and ultimate strength were estimated. The contribution of the section increase of the prestressing method using tendon was less than the prestressing method using cover plate. In accordance with numerical and analytical approaches, the ultimate strength of the prestressed composite beam is shown to be the same value because strength is determined according to the plastic resistance moment and the plastic neutral axis; however, both plastic resistance moment and neutral axis are not affected by prestressing force but affected by sectional stiffness of the prestressing member. Based on these approaches, we concluded that the prestressing method using tendon can be useful in applications without an increase in self-weight, and the prestressing method using high-strength cover plate can be applied to reduce the deflection of the composite beam. The prestressing method using high-strength cover plate can also be used to induce prestress of the composite beam in the case of a large deflection due to a smaller sectional stiffness of the composite beam.

Effect of the composite patch beveling on the reduction of stresses in 2024-T3 Aluminum structure damaged and repaired by composite, hybrid patch repair

  • Belhoucine, A.;Madani, K.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.17-30
    • /
    • 2022
  • The use of composite patches for the reduction of stresses at the level of the damaged zone in aeronautical structures has experienced rapid expansion given its advantages over conventional mechanical processes (riveting, bolting, etc.). Initially, The research axes in this field were aimed at choosing suitable mechanical properties for the composite and the adhesive, then to optimize the shape of the composite patch in order to ensure good load transfer and avoid having a debonding at the level of the edges essentially for the case of a repair by single side where the bending moment is present due to the non-symmetry of the structure. Our work falls within this context; the objective is to analyze by the finite element method the fracture behavior of a damaged plate repaired by composite patch. Stress reduction at the edge is accomplished by creating a variable angle chamfer on the composite patch. The effects of the crack length, the laminate sequence and the nature of the patch as well as the use of a hybrid patch were investigated. The results show clearly that a beveled patch reduces the stress concentrations in the damaged area and even at its edges. The hybrid patch also ensures good durability of the repair by optimizing its stacking sequence and the location of the different layers according to the fibers orientations.

A Study on Frequency Characteristics of Impact Induced Damage Signals of Composite Laminates as the Incident Angle of an FBG sensor (복합재 충격손상신호의 FBG센서 입사각도에 따른 주파수분포 특성에 관한 연구)

  • Bang, Hyung-Jun;Song, Ji-Yong;Kim, Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.235-239
    • /
    • 2005
  • In this research, we investigated the frequency characteristic of low-velocity impact induced damage signals on graphite/epoxy composite laminates using high-speed fiber Bragg grating(FBG) sensor system. Appling the FBG sensors to damage assessment, we need to study the response of FBG sensors as the damage signals of the different incident angles because FBG shows different directional sensitivity. In order to discriminate an impact induced damage signal from that of undamaged case, drop impacts with different energies were applied to the composite panel with different incident angle to the FBG sensor. Finally, detected impact signals were compared using frequency distributions of wavelet detail components in order to find distinctive signal characteristics of composites delamination.

  • PDF

Optimum design of composite steel frames with semi-rigid connections and column bases via genetic algorithm

  • Artar, Musa;Daloglu, Ayse T.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.1035-1053
    • /
    • 2015
  • A genetic algorithm-based minimum weight design method is presented for steel frames containing composite beams, semi-rigid connections and column bases. Genetic Algorithms carry out optimum steel frames by selecting suitable profile sections from a specified list including 128 W sections taken from American Institute of Steel Construction (AISC). The displacement and stress constraints obeying AISC Allowable Stress Design (ASD) specification and geometric (size) constraints are incorporated in the optimization process. Optimum designs of three different plane frames with semi-rigid beam-to-column and column-to-base plate connections are carried out first without considering concrete slab effects on floor beams in finite element analyses. The same optimization procedures are then repeated for the case of frames with composite beams. A program is coded in MATLAB for all optimization procedures. Results obtained from the examples show the applicability and robustness of the method. Moreover, it is proved that consideration of the contribution of concrete on the behavior of the floor beams enables a lighter and more economical design for steel frames with semi-rigid connections and column bases.

Strength of Composite-to-Aluminum Bonding and Bolting Hybrid Joints (복합재-알루미늄 이종재료 하이브리드 체결부 강도 특성에 관한 연구)

  • Jung, Jae-Wo;Kim, Tae-Hwan;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.57-60
    • /
    • 2005
  • Composite-to-aluminum joins were tested to get failure loads and modes for three types of joins; adhesive bonding, bolt fastening, and adhesive-bolt hybrid joining. Film type adhesive FM73 and paste type adhesive Cytec EA9394S were used for aluminum and composite bonding to make a double-lap joint. A digital microscope camcorder was used to monitor the failure initiation and propagation. It was found that the hybrid joining is an effective method to strengthen the joint when the mechanical fastening is stronger than the bonding as in the case of using the paste type adhesive. On the contrary, when the strength of the bolted joint is lower than the strength of the bonded joint as in the joint with the film type adhesive, the bolt joining contribute little to the hybrid joint strength.

  • PDF