• Title/Summary/Keyword: Composite Action

Search Result 361, Processing Time 0.02 seconds

Seismic response of steel reinforced concrete frame-bent plant of CAP1400 nuclear power plant considering the high-mode vibration

  • Biao Liu;Zhengzhong Wang;Bo Zhang;Ningjun Du;Mingxia Gao;Guoliang Bai
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.221-236
    • /
    • 2023
  • In order to study the seismic response of the main plant of steel reinforced concrete (SRC) structure of the CAP1400 nuclear power plant under the influence of different high-mode vibration, the 1/7 model structure was manufactured and its dynamic characteristics was tested. Secondly, the finite element model of SRC frame-bent structure was established, the seismic response was analyzed by mode-superposition response spectrum method. Taking the combination result of the 500 vibration modes as the standard, the error of the base reactions, inter-story drift, bending moment and shear of different modes were calculated. Then, based on the results, the influence of high-mode vibration on the seismic response of the SRC frame-bent structure of the main plant was analyzed. The results show that when the 34 vibration modes were intercepted, the mass participation coefficient of the vertical and horizontal vibration mode was above 90%, which can meet the requirements of design code. There is a large error between the seismic response calculated by the 34 and 500 vibration modes, and the error decreases as the number of modes increases. When 60 modes were selected, the error can be reduced to about 1%. The error of the maximum bottom moment of the bottom column appeared in the position of the bent column. Finally, according to the characteristics of the seismic influence coefficient αj of each mode, the mode contribution coefficient γj•Xji was defined to reflect the contribution of each mode to the seismic action.

Optimization of Enzymatic Hydrolysis with Cryotin F on Antioxidative Activities for Shrimp Hydrolysate Using Response Surface Methodology

  • Lee, Yang-Bong;Raghavan, Sivakumar;Nam, Min-Hee;Choi, Mi-Ae;Hettiarachchy, Navam S.;Kristinsson, Hordur G.;Marshall, Maurice R.
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.4
    • /
    • pp.323-328
    • /
    • 2009
  • Cryotin F could be used for hydrolyzing shrimp byproducts into bioactive ingredients, which could be used as value-added products. The objective of this study was to investigate the optimum condition for antioxidative activities of the enzymatic hydrolysate produced with Cryotin F using response surface methodology with central composite rotatable design. Shrimp byproducts (shells and heads) were hydrolyzed with Cryotin F. The experimental ranges of the independent variables for 20 experimental runs were 28.2-61.8${^{\circ}C}$ reaction temperature, pH 6-10 and 0.5-5.5% enzyme concentration. The degree of hydrolysis for the reaction products was measured. Their antioxidative activities were measured using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging activity and Fe-chelating activity. The experimental method with central composite rotatable design was well designed to investigate the optimum condition for biofunctional ingredients with antioxidative activities using Cryotin F because of their high R2 values of 0.97 and 0.95 for DPPH-scavenging activity and Fe-chelating activity, respectively. Change in enzyme concentration did not significantly affect their antioxidative activities (p<0.05). Both DPPH scavenging activity and chelating activity against Fe for the enzyme hydrolysates were more affected by the pH of enzyme hydrolysis than by their action temperature. DPPH-scavenging activity was higher at acidic pH than alkali pH, while chelating activity against Few was inversely affected. Hydrolysate of shrimp byproducts showed high antioxidative activities depending on the treatment condition, so the optimum treatment of enzymatic hydrolysate with Cryotin F and other proteases can be applied to shrimp byproducts (shells) and other protein sources for biofunctional ingredients.

Shear resistance behaviors of a newly puzzle shape of crestbond rib shear connector: An experimental study

  • Chu, Thi Hai Vinh;Bui, Duc Vinh;Le, Van Phuoc Nhan;Kim, In-Tae;Ahn, Jin-Hee;Dao, Duy Kien
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1157-1182
    • /
    • 2016
  • A newly puzzle shape of crestbond rib shear connector is a type of ductile perfobond rib shear connector. This shear connector has some advantages, including relatively easy rebar installation and cutting, as well as the higher shear resistance strength. Thus, this study proposed a newly puzzle shape of crestbond rib with a "${\mho}$" shape, and its shear resistance behaviors and shear strengths were examined using push-out tests. Five main parameters were considered in the push-out specimens to evaluate the effects of shear resistance parameters such as the dimensions of the crestbond rib, transverse rebars in the crestbond dowel, concrete strength, rebar strength, and dowel action on the shear strength. The shear loading test results were used to compare the changes in the shear behaviors, failure modes, and shear strengths. It was found that the concrete strength and number of transverse rebars in the crestbond rib were significantly related to its shear resistance. After the initial bearing resistance behavior of the concrete dowel, a relative slip occurred in all the specimens. However, its rigid behavior to shear loading decreased the ductility of the shear connection. The cross-sectional area of the crestbond rib was also shown to have a minor effect on the shear resistance of the crestbond rib shear connector. The failure mechanism of the crestbond rib shear connector was complex, and included compression, shear, and tension. As a failure mode, a crack was initiated in the middle of the concrete slab in a vertical direction, and propagated with increasing shear load. Then, horizontal cracks occurred and propagated to the front and rear faces of the specimens. Based on the results of this study, a design shear strength equation was proposed and compared with previously suggested equations.

Reliability analysis for lateral stability of tongwamen bridge

  • Pan, Sheng-Shan;Lei, Shi;Tan, Yong-Gang;Zhang, Zhe
    • Steel and Composite Structures
    • /
    • v.11 no.5
    • /
    • pp.423-434
    • /
    • 2011
  • Tongwamen Bridge is a critical link between Dongmen Island and the land in Shipu town, Zhejiang province, China. It is a 238 m span, half-through, concrete-filled steel tubular (CFST) X-type arch bridge. The width of the deck is only 10 m, yielding a width-to-span ratio of 1/23.8. The plane truss type section rib was adopted, which made of two CFST chords and web member system. The lateral stability is the key issue to this bridge. However, the existing researches on Tongwamen Bridge's lateral stability are all the deterministic structural analysis. In this paper, a new strategy for positioning sampling points of the response surface method (RSM), based on the composite method combining RSM with geometric method for structural reliability analysis, is employed to obtain the reliability index of lateral stability. In addition the correlated parameters were discussed in detail to find the major factors. According to the analysis results, increasing the stiff of lateral braces between the arch ribs and setting the proper inward-incline degree of the arch rib can enhance obviously the reliability of lateral stability. Moreover, the deck action of non-orienting force is less than the two factors above. The calculated results indicate that the arch ribs are safe enough to keep excellent stability, and it provides the foundation that the plane truss rib would be a competitive solution for a long-span, narrow, CFST arch bridge.

Reliability Analysis Model for Deflection Limit State of Deteriorated Steel Girder Bridges (처짐한계상태함수를 이용한 노후 강거더 교량의 신뢰성해석 모델 구축)

  • Eom, Jun-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.47-53
    • /
    • 2014
  • The paper investigates the limit state of deflection for short and medium span steel girder bridges. Deflection depends on stiffness of steel girders and integrity of the reinforced concrete slab (composite action). Load and resistance parameters are treated as random variables. A probabilistic model is developed for prediction of the deflection. The structural performance can be affected by deterioration of components, in particular corrosion of steel girders. In addition, the creep of concrete can greatly influence the deflection of composite structures. Therefore, the statistical models for creep and corrosion of structural steel are incorporated in the model. Structures designed according to the AASHTO LRFD Code are considered. Load and resistance models are developed to account for time-variability of the parameters. Monte Carlo simulations are used to estimate the deflections and probabilities of serviceability failure. Different span lengths and girder spacing are considered for structures designed as moment-controlled and deflection-controlled. A summary of obtained results is presented.

Impact response of a novel flat steel-concrete-corrugated steel panel

  • Lu, Jingyi;Wang, Yonghui;Zhai, Ximei;Zhou, Hongyuan
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.277-288
    • /
    • 2022
  • A novel flat steel plate-concrete-corrugated steel plate (FS-C-CS) sandwich panel was proposed for resisting impact load. The failure mode, impact force and displacement response of the FS-C-CS panel under impact loading were studied via drop-weight impact tests. The combined global flexure and local indentation deformation mode of the FS-C-CS panel was observed, and three stages of impact process were identified. Moreover, the effects of corrugated plate height and steel plate thickness on the impact responses of the FS-C-CS panels were quantitatively analysed, and the impact resistant performance of the FS-C-CS panel was found to be generally improved on increasing corrugated plate height and thickness in terms of smaller deformation as well as larger impact force and post-peak mean force. The Finite Element (FE) model of the FS-C-CS panel under impact loading was established to predict its dynamic response and further reveal its failure mode and impact energy dissipation mechanism. The numerical results indicated that the concrete core and corrugated steel plate dissipated the majority of impact energy. In addition, employing end plates and high strength bolts as shear connectors could prevent the slip between steel plates and concrete core and assure the full composite action of the FS-C-CS panel.

Difference analysis of the collapse behaviors of the single-story beam-column assembly and multi-story planar frame

  • Zheng Tan;Wei-Hui Zhong;Bao Meng;Xing-You Yao;Yu-Hui Zheng;Yao Gao;Shi-Chao Duan
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.265-280
    • /
    • 2024
  • The collapse behavior observed in single-story beam-column assembly (SSBCA) do not accurately represent the actual overall stress characteristic of multi-story frame structure (MSFS) under column loss scenario owing to ignoring the interaction action among different stories, leading to a disconnection between the anti-collapse behaviors of "components" and "overall structures", that is, the anti-collapse performance of frame structures with two different structural scales has not yet formed a combined force. This paper conducts a numerical and theoretical study to explore the difference of the collapse behaviors of the SSBCA and MSFS, and further to reveal the internal force relationships and boundary constraints at beam ends of models SSBCA and MSFS. Based on the previous experimental tests, the corresponding refined numerical simulation models were established and verified, and comparative analysis on the resistant-collapse performance was carried out, based on the validated modeling methods with considering the actual boundary constraints, and the results illustrates that the collapse behaviors of the SSBCA and MSFS is not a simple multiple relationship. Through numerical simulation and theoretical analysis, the development laws of internal force in each story beam under different boundary constraints was clarified, and the coupling relationship between the bending moment at the most unfavorable section and axial force in the composite beam of different stories of multi story frames with weld cover-plated flange connections was obtained. In addition, considering the effect of the yield performance of adjacent columns on the anti-collapse bearing capacities of the SSBCA and MSFS during the large deformation stages, the calculation formula for the equivalent axial stiffness at the beam ends of each story were provided.

Mechanical performance analysis of an electromagnetic friction pendulum system based on Maxwell's principle

  • Mao Weikang;Li Xiaodong;Chen Enliang
    • Earthquakes and Structures
    • /
    • v.27 no.2
    • /
    • pp.143-154
    • /
    • 2024
  • Friction pendulums typically suffer from poor uplift-restraining. To improve the uplift-restraining and enhance the energy dissipation capacity, this article proposed a composite isolation device based on electromagnetic forces. The device was constructed based on a remote control system to achieve semi-active control of the composite isolation device. This article introduces the theory and design of an electromagnetic chuck-friction pendulum system (ECFPS) and derives the theoretical equation for the ECFPS based on Maxwell's electromagnetic attraction equation to construct the proposed model. By conducting 1:3 scale tests on the electromagnetic device, the gaps between the practical, theoretical, and simulation results were analyzed, and the accuracy and effectiveness of the theoretical equation for the ECFPS were investigated. The hysteresis and uplift-restraining performance of ECFPS were analyzed by adjusting the displacement amplitude, vertical load, and input current of the simulation model. The data obtained from the scale test were consistent with the theoretical and simulated data. Notably, the hysteresis area of the ECFPS was 35.11% larger than that of a conventional friction pendulum. Lastly, a six-story planar frame structure was established through SAP2000 for a time history analysis. The isolation performances of ECFPS and FPS were compared. The results revealed that, under horizontal seismic action, the horizontal seismic response of the bottom layer of the ECFPS isolation structure is greater than that of the FPS, the horizontal vibration response of the top layer of the ECFPS isolation structure is smaller than that of the FPS, and the axial force at the bottom of the columns of the ECFPS isolation structure is smaller than that of the FPS isolation structure. Therefore, the reliable uplift-restraining performance is facilitated by the electromagnetic force generated by the device.

Numerical simulation of steel plate reinforced concrete panels exposed to impact loading using multi-solver technique (Multi-solver 기법을 이용한 강판보강 콘크리트 패널의 충돌 수치 시뮬레이션)

  • Noh, Myung-Hyun;Lee, Sang-Youl;Park, Tae-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.590-595
    • /
    • 2008
  • In the present paper, the impact damage behavior of steel plate reinforced concrete panels exposed to shock impulsive loading and fragment impact loading is investigated. To evaluate the retrofit performance of a steel-strengthened concrete panels, a numerical experiment using a numerical simulation with AUTODYN, an explicit analysis program is introduced because a real explosion experiment requires the vast investment and expense for facilities as well as the deformation mechanisms are too complicated to be reproduced with a conventional closed-form analyses. The model for the analysis is simplified and idealized as a two-dimensional and axisymmetric case controled with geometry, boundary condition and material properties in order to obtain a resonable computation time. As a result of the analysis, panels subject to either shock loading or fragment loading without the steel plate reinforcement experience the perforation with spalled fragments. In addition, the panels reinforced with steel plate can prevent the perforation and provide the good mechanical effect such as the increase of global stiffness and strength through the composite action between the concrete slab and the steel plate.

  • PDF

Local buckling and shift of effective centroid of cold-formed steel columns

  • Young, Ben
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.235-246
    • /
    • 2005
  • Local buckling is a major consideration in the design of thin-walled cold-formed steel sections. The main effect of local buckling in plate elements under longitudinal compressive stresses is to cause a redistribution of the stresses in which the greatest portion of the load is carried near the supporting edges of the plate junctions. The redistribution produces increased stresses near the plate junctions and high bending stresses as a result of plate flexure, leading to ultimate loads below the squash load of the section. In singly symmetric cross-sections, the redistribution of longitudinal stress caused by local buckling also produces a shift of the line of action of internal force (shift of effective centroid). The fundamentally different effects of local buckling on the behaviour of pin-ended and fixed-ended singly symmetric columns lead to inconsistencies in traditional design approaches. The paper describes local buckling and shift of effective centroid of thin-walled cold-formed steel channel columns. Tests of channel columns have been described. The experimental local buckling loads were compared with the theoretical local buckling loads obtained using an elastic finite strip buckling analysis. The shift of the effective centroid was also compared with the shift predicted using the Australian/New Zealand and American specifications for cold-formed steel structures.