• Title/Summary/Keyword: Composite/Metal Joining

Search Result 32, Processing Time 0.029 seconds

Effects of Mn and C Addition on the Wear Resistance for the Recycled WC Dispersed Fe-base Hardfacing Weld (재생 WC 분산형 Fe계 하드페이싱 용접재료의 마모저항성에 미치는 Mn과 C 첨가의 영향)

  • Kang, Nam-hyun;Chae, Hyun-byung;Kim, Jun-ki;Choi, Jong-ha;Kim, Jeong-han
    • Korean Journal of Materials Research
    • /
    • v.13 no.12
    • /
    • pp.839-845
    • /
    • 2003
  • The abrasion and impact wear resistance were investigated on the hardfacing weld dispersed with the recycled hard metal(HM). The HM was composed of the tungsten carbide(WC) reinforced metal matrix composite. The cored wire filled with the 25-35wt.% HM and 2-8wt.% of the alloying element, Fe-75Mn- 7C(FeMnC), was used for the gas metal arc(GMA) welding. By using the cored wire of the 25wt.% HM and FeMnC addition, the weld showed mostly constant wear loss for the abrasion as a function of the FeMnC content. This was due to the insufficient amount of the tungsten carbide formed during the GMA welding. The FeMnC addition to the 35wt.% HM did not improve the abrasion wear property since the amount of the tungsten carbide formed was decreased with respect to the FeMnC amount. The 6wt.% FeMnC addition to the 35wt.% HM exhibited the better impact wear resistance than the hardfacing weld by 40wt.% HM.

Infiltration Processing of Ceramic-Metal Composites: The Role of Wettability, Reaction, and Capillary Flow

  • Asthana Rajiv;Singh Mrityunjay;Sobczak Natalia
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.703-717
    • /
    • 2005
  • The infiltration of ceramics by liquid metals to fabricate ceramic-metal composites is discussed. In particular, the complexity of infiltrating ceramics by liquid metals at high temperatures due to interfacial reactions, metal oxidation, pore modulation and closure, and transient capillary forces has been highlighted. The role of these factors is discussed in the context of reactive infiltration with examples from ceramic/metal composites of practical interest. In addition to flow through porous ceramics, reactive penetration of dense ceramics via chemical dissolution and reaction is also discussed.

Microstructure and Thermal Behaviors of Droplets During the Formation of Particle Reinforced Metal Matrix Composites by Spray Casting Process (분사주조에 의한 입자강화 금속기지 복합재료의 제조시 액적의 열적거동과 미세조직에 대한 고찰)

  • Kim, Myung-Ho;Bae, Cha-Hurn;Jeong, Hae-Young;Park, Heung-Il
    • Journal of Korea Foundry Society
    • /
    • v.12 no.4
    • /
    • pp.326-334
    • /
    • 1992
  • Particle-reinforced metal matrix composites via the Osprey spray casting process were fabricated by injecting second phase particles of $Al_2O_3$(<$40{\mu}m$) and W($6{\mu}m$) into the spray of Cu droplets, and the thermal behaviors of the composite droplets during flight were considered theoretically on the basis of mixing modes between the Cu droplets and the reinforced particulates injected. It was found that the W-injected spray is comprised of particle-embedded droplets, and the $Al_2O_3-injected$ spray comprises particle-attached droplets. From the predicted results of the thermal behaviors of the composite droplets and preforms produced, it is concluded that the thermal behaviors of the composite droplets during flight, and during the subsequent deposition are strongly influenced by its mixing modes between the reinforced particulates and Cu droplets during flight.

  • PDF

Numerical Study for the Improvement of Tapered-hole Clinching Joint Strength of Fiber Metal Laminates and Aluminum 5052 using the Taguchi Method (다구찌 기법을 이용한 섬유금속적층판과 Al 5052 합금의 경사 홀 클린칭 접합력 향상을 위한 수치적 연구)

  • Kang, D.S.;Lee, B.E.;Park, E.T.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • The purpose of the current study is to improve the clinching joint strength of aluminum and fiber metal laminates (FMLs) comprised of three layers. The joining of FML and Al 5052 by a conventional clinching joint has some disadvantages such as necking of the upper sheet, lack of interlocking, defects caused by the vertical load, and especially loss of strength of the composite material due to the low ductility. In the current study, a tapered-hole clinching method is proposed as an alternative for the joining of Al 5052 and FMLs. A hole with a tapered shape is formed before the joining process. The design parameters were evaluated using the Taguchi method for the geometry of the tapered hole in order to determine the maximum separation load. The diameter of the punch corner, clearance, punch stroke and the tapered length were used as the main variables in the Taguchi method. In conclusion, the contribution ratio for each of the fours variable examined was 35.07%, 22.44%, 21.32% and 14.11%, respectively. In addition, the appropriate combination of the design parameters can make a 5% improvement in the vertical direction joint strength.

Properties of Plasma Sprayed $Al_2O_3/SS316$ Graded Coatings (플라즈마 용사용 $Al_2O_3/SS316$ 복합 분말 제조 및 경사 코팅충의 제조에 관한 연구)

  • 민재웅;송병길;김삼중;노재승;서동수
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.109-115
    • /
    • 2002
  • In the case of using high temperature by coating ceramic/metal, large stress was produced due to difference of thermal expansion coefficient between those. And then lead to delamination. In order to relaxation of the stress A1$_2$O$_3$/SS316 composite powders with $10wt.%Al_2O_3$ compositional gradient and $10wt.%Al_2O_3$ agglomerated powder were made by spray drying method. These powders were sintered to improve the strength and to be plasma sprayed in order to fabricate the FGC(functionally graded coating). The influence of gun power, working distance and Ar pressure on the microstructure of the coating layer was studied in order to optimize the plasma spray conditions. It was proven that the optimum conditions were 40kw gun power, 5cm working distance and $100ft^3/h$ Ar flow for both powders. FGC with 10 compositional steps was fabricated and the total thickness was 1.3mm. FGC was heat treated at $1100^{\circ}C$for 10hours to evaluate the heat resisting characteristics.

Optimization of arc brazing process parameters for exhaust system parts using box-behnken design of experiment

  • Kim, Yong;Park, Pyeong-Won;Park, Ki-Young;Ryu, Jin-Chul
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.23-31
    • /
    • 2015
  • Stainless steel is used in automobile muffler and exhaust systems. However, in comparison with other steels it has a high thermal expansion rate and low thermal conductivity, and undergoes excessive thermal deformation after welding. To address this problem, we evaluated the use of arc brazing in place of welding for the processing of an exhaust system, and investigated the parameters that affect the joint characteristics. Muffler parts STS439 and hot-dipped Al coated steel were used as test specimens, and CuAl brazing wire was used as the filler metal for the cold metal transfer (CMT) welding machine, which is a low heat input arc welder. In addition, a Box-Behnken design of experiment was used, which is a response surface methodology. The main process parameters (current, speed, and torch angle) were used to determine the appropriate welding quality and the mechanical properties of the brazing part was evaluated at the optimal welding condition. The optimal processing condition for arc brazing was 135A current, 51cm/min speed and $74^{\circ}$ torch angle. The process was applied to an actual exhaust system muffler and the prototype was validated by thermal fatigue, thermal shock, and endurance limit tests.

Characterization of Microstructure of WC-6.5%Co Cladding Layer by Electric Resistance Welding (저항클래딩법을 응용하여 형성된 내마모성 WC-6.5Co 클래딩층의 미크로조직 특성)

  • Lee, Jin-Woo;Ko, Jun-Bin;Lee, Young-Ho
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.72-77
    • /
    • 2007
  • This study deals with characterizations of microstructure and wear performance of a cladding layer, product on 1.9 mm-thick mild steel plate by the electric resistance welding, of composite metal powder of Coarse WC-6.5%Co and high carbon alloy (SHA). The cladding layer was examined and tested for microstructural features, chemical composition, hardness, and bondability. The cladding layer have two different matrix were observed by an optical microscope and EPMA. The one was the coarse WC-6.5Co structure. The other was the melted SHA with surrounding the WC-6.5Co structure. The hardness of WC-6.5Co was 1210HV. The hardness of SHA was 640HV.

Effects of Strain Rate and Temperature on Fracture Strength of Ceramic/Metal Joint Brazed with Ti-Ag-Cu Alloy

  • Seo, Do-Won;Lim, Jae-Kyoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1078-1083
    • /
    • 2002
  • Ceramics are significantly used in many industrial applications due to their excellent mechanical and thermal properties such as high temperature strength, low density, high hardness, low thermal expansion, and good corrosion resistive properties, while their disadvantages are brittleness, poor formability and high manufacturing cost. To combine advantages of ceramics with those of metals, they are often used together as one composite component, which necessiates reliable joining methods between metal and ceramic. Direct brazing using an active filler metal has been found to be a reliable and simple technique, producing strong and reliable joints. In this study, the fracture characteristics of Si$_3$N$_4$ ceramic joined to ANSI 304L stainless steel with a Ti-Ag-Cu filler and a Cu (0.25-0.3 mm) interlayer are investigated as a function of strain rate and temperature. In order to evaluate a local strain a couple of strain gages are pasted at the ceramic and metal sides near joint interface. As a result the 4-point bending strength and the deflection of interlayer increased at room temperature with increasing strain rate. However bending strength decreased with temperature while deflection of interlayer was almost same. The fracture shapes were classified into three groups ; cracks grow into the metal-brazing filler line, the ceramic-brazing filler line or the ceramic inside.

Cracking Susceptibility of Laser Cladding Process with Co-Based Metal Matrix Composite Powders (레이저 클래딩 공정 조건이 코발트 합금-텅스텐 카바이드 혼합 코팅층의 균열 발생에 미치는 영향)

  • Lee, Changmin;Park, Hyungkwon;Lee, Changhee
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.41-46
    • /
    • 2014
  • In this study, cracking susceptibility of laser cladding was investigated according to the processing parameters such as laser power, scan speed and feeding rate with blended powders of stellite#6 and technolase40s (WC+NiCr). The solidification microstructure of clad was composed of Co-based dendrite structures with ${\gamma}+Cr7C3$ eutectic phases at the dendritic boundaries. The crack propagation showed transgranular fracture along dendritic boundaries due to brittle chrome carbide at the eutectic phases. From results of fractography experiments, the fracture surface was typical cleavage brittle fracture in the clad and substrate. The number of clad cracks, caused by a tensile stress after the solidification, increased with increase of laser power, scan speed and feeding rate. Increase of the laser power caused large pores by facilitating WC decarburizing reaction. And the pores affected increase of crack susceptibility. High scan speed caused increment of clad cracks due to thermal stress and WC particle fractures. Also, increase of the feeding rate accompanied an amount of WC particles causing crack initiation and decarburizing reaction.

Selection of an Optimal Welding Condition for Back Bead Formation in GMA Root Pass Welding (GMA 초층용접에서 이면비드 생성을 위한 최적용접조건의 선정)

  • Yun, Young-Kil;Kim, Jae-Woong;Yun, Seok-Chul
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.86-92
    • /
    • 2010
  • In GMAW processes, bead geometry is a criterion to estimate welding quality. Bead geometry is affected by welding current, arc voltage, welding speed, shielding gas and so on. Thus the welding condition has to be selected carefully. In this paper, an experimental method for the selection of optimal welding condition was proposed in the root pass welding which was done along the GMA V-grooved butt weld joint. This method uses the response surface analysis in which the width and height of back bead were chosen as the quality variables of the weld. The overall desirability function, which is the combined desirability function for the two quality variables, was used as the objective function for getting the optimal welding condition. Through the experiments, the target values of the back bead width and the height were chosen as 4mm and 1mm respectively for the V-grooved butt weld joint. From a series of welding test, it was revealed that a uniform weld bead can be obtained by adopting the optimal welding condition which was determined according to the method proposed.