• Title/Summary/Keyword: Components detection

Search Result 1,126, Processing Time 0.029 seconds

Skew correction of face image using eye components extraction (눈 영역 추출에 의한 얼굴 기울기 교정)

  • Yoon, Ho-Sub;Wang, Min;Min, Byung-Woo
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.12
    • /
    • pp.71-83
    • /
    • 1996
  • This paper describes facial component detection and skew correction algorithm for face recognition. We use a priori knowledge and models about isolated regions to detect eye location from the face image captured in natural office environments. The relations between human face components are represented by several rules. We adopt an edge detection algorithm using sobel mask and 8-connected labelling algorith using array pointers. A labeled image has many isolated components. initially, the eye size rules are used. Eye size rules are not affected much by irregular input image conditions. Eye size rules size, and limited in the ratio between gorizontal and vertical sizes. By the eye size rule, 2 ~ 16 candidate eye components can be detected. Next, candidate eye parirs are verified by the information of location and shape, and one eye pair location is decided using face models about eye and eyebrow. Once we extract eye regions, we connect the center points of the two eyes and calculate the angle between them. Then we rotate the face to compensate for the angle so that the two eyes on a horizontal line. We tested 120 input images form 40 people, and achieved 91.7% success rate using eye size rules and face model. The main reasons of the 8.3% failure are due to components adjacent to eyes such as eyebrows. To detect facial components from the failed images, we are developing a mouth region processing module.

  • PDF

Effective Dimensionality Reduction of Payload-Based Anomaly Detection in TMAD Model for HTTP Payload

  • Kakavand, Mohsen;Mustapha, Norwati;Mustapha, Aida;Abdullah, Mohd Taufik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3884-3910
    • /
    • 2016
  • Intrusion Detection System (IDS) in general considers a big amount of data that are highly redundant and irrelevant. This trait causes slow instruction, assessment procedures, high resource consumption and poor detection rate. Due to their expensive computational requirements during both training and detection, IDSs are mostly ineffective for real-time anomaly detection. This paper proposes a dimensionality reduction technique that is able to enhance the performance of IDSs up to constant time O(1) based on the Principle Component Analysis (PCA). Furthermore, the present study offers a feature selection approach for identifying major components in real time. The PCA algorithm transforms high-dimensional feature vectors into a low-dimensional feature space, which is used to determine the optimum volume of factors. The proposed approach was assessed using HTTP packet payload of ISCX 2012 IDS and DARPA 1999 dataset. The experimental outcome demonstrated that our proposed anomaly detection achieved promising results with 97% detection rate with 1.2% false positive rate for ISCX 2012 dataset and 100% detection rate with 0.06% false positive rate for DARPA 1999 dataset. Our proposed anomaly detection also achieved comparable performance in terms of computational complexity when compared to three state-of-the-art anomaly detection systems.

Anomaly Detection from Hyperspectral Imagery using Transform-based Feature Selection and Local Spatial Auto-correlation Index (자료 변환 기반 특징 선택과 국소적 자기상관 지수를 이용한 초분광 영상의 이상값 탐지)

  • Park, No-Wook;Yoo, Hee-Young;Shin, Jung-Il;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.357-367
    • /
    • 2012
  • This paper presents a two-stage methodology for anomaly detection from hyperspectral imagery that consists of transform-based feature extraction and selection, and computation of a local spatial auto-correlation statistic. First, principal component transform and 3D wavelet transform are applied to reduce redundant spectral information from hyperspectral imagery. Then feature selection based on global skewness and the portion of highly skewed sub-areas is followed to find optimal features for anomaly detection. Finally, a local indicator of spatial association (LISA) statistic is computed to account for both spectral and spatial information unlike traditional anomaly detection methodology based only on spectral information. An experiment using airborne CASI imagery is carried out to illustrate the applicability of the proposed anomaly detection methodology. From the experiments, anomaly detection based on the LISA statistic linked with the selection of optimal features outperformed both the traditional RX detector which uses only spectral information, and the case using major principal components with large eigen-values. The combination of low- and high-frequency components by 3D wavelet transform showed the best detection capability, compared with the case using optimal features selected from principal components.

A Study on the Vibration Analysis of Multi-components Damaged Ball Bearing under Radial Load (반경하중을 받는 결함 볼베어링의 진동해석에 관한 연구)

  • 김영주;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.35-45
    • /
    • 1988
  • In this paper an experimental review of condition monitoring method using time domain vibration signals and statically measured wave forms of a multi-components damaged ball bearing is presented first time. Many investigators studied already about vibration characteristics of a single point damaged ball bearing but they did not make efforts to verify vibration phenomena of a multi-components damaged one. Even in case of a tripple components damaged (i.e, outer race, inner race and rolling element) one, the high frequency resonance technique (HERT) and the displacement time domain technique can be also used for its fault detection. According to experimental results undertaken a static displacement measuring method, the defect locations of components can be proposed confidently with simple calculation of the rotating angles of each component.

  • PDF

Evaluation of 1/f Noise Characteristics for Si-Based Infrared Detection Materials

  • Ryu, Ho-Jun;Kwon, Se-In;Cheon, Sang-Hoon;Cho, Seong-Mok;Yang, Woo-Seok;Choi, Chang-Auck
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.703-708
    • /
    • 2009
  • Silicon antimony films are studied as resistors for uncooled microbolometers. We present the fabrication of silicon films and their alloy films using sputtering and plasma-enhanced chemical vapor deposition. The sputtered silicon antimony films show a low 1/f noise level compared to plasma-enhanced chemical vapor deposition (PECVD)-deposited amorphous silicon due to their very fine nanostructure. Material parameter K is controlled using the sputtering conditions to obtain a low 1/f noise. The calculation for specific detectivity assuming similar properties of silicon antimony and PECVD amorphous silicon shows that silicon antimony film demonstrates an outstanding value compared with PECVD Si film.

Hybrid Neural Networks for Intrusion Detection System

  • Jirapummin, Chaivat;Kanthamanon, Prasert
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.928-931
    • /
    • 2002
  • Network based intrusion detection system is a computer network security tool. In this paper, we present an intrusion detection system based on Self-Organizing Maps (SOM) and Resilient Propagation Neural Network (RPROP) for visualizing and classifying intrusion and normal patterns. We introduce a cluster matching equation for finding principal associated components in component planes. We apply data from The Third International Knowledge Discovery and Data Mining Tools Competition (KDD cup'99) for training and testing our prototype. From our experimental results with different network data, our scheme archives more than 90 percent detection rate, and less than 5 percent false alarm rate in one SYN flooding and two port scanning attack types.

  • PDF

P-wave Detection Using Wavelet Transform (Wavelet Transform을 이용한 P파 검출에 관한 연구)

  • 윤영로;장원석
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.507-514
    • /
    • 1996
  • The automated ECG diagnostic systems in hospital have a low P-wave detection capacity in case of some diseases like conduction block. The purpose of this study is to improve the P-wave detection ca- pacity using wavelet transform. The first procedure is to remove baseline drift by subtracting the median filtered signal from the original signal. The second procedure is to cancel ECG's QRS-T complex from median filtered signal to get P-wave candidate. Before we subtracted the templete from QRS-T complex, we estimated the best matching between templete and QRS-T complex to minimize the error. Then, wavelet transform was applied to confirm P-wave. In particular, haiti wavelet was used to magnify P-wave that consisted of low frequency components and to reject high frequency noise of QRS-T complex cancelled signal. Finally, p-wave was discriminated and confirmed by threshold value. By using this method, We can got the around 95.1% P-wave detection. It was compared with contextual information.

  • PDF

Deep Window Detection in Street Scenes

  • Ma, Wenguang;Ma, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.855-870
    • /
    • 2020
  • Windows are key components of building facades. Detecting windows, crucial to 3D semantic reconstruction and scene parsing, is a challenging task in computer vision. Early methods try to solve window detection by using hand-crafted features and traditional classifiers. However, these methods are unable to handle the diversity of window instances in real scenes and suffer from heavy computational costs. Recently, convolutional neural networks based object detection algorithms attract much attention due to their good performances. Unfortunately, directly training them for challenging window detection cannot achieve satisfying results. In this paper, we propose an approach for window detection. It involves an improved Faster R-CNN architecture for window detection, featuring in a window region proposal network, an RoI feature fusion and a context enhancement module. Besides, a post optimization process is designed by the regular distribution of windows to refine detection results obtained by the improved deep architecture. Furthermore, we present a newly collected dataset which is the largest one for window detection in real street scenes to date. Experimental results on both existing datasets and the new dataset show that the proposed method has outstanding performance.

THE DEVELOPMENT OF CHANGE DETECTION SOFTWARE FOR PUBLIC SERVICES

  • Jeong, Soo;Lee, Sun-Gu;Kim, Youn-Soo;Kim, Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.702-705
    • /
    • 2006
  • Change detection is a core function of remote sensing. It can be widely used in public services such as land monitoring, damage assessment from disaster, analysis of city growth, etc. However, it seems that the change detection using satellite imagery has not been fully used in public services. For the person who is in charge of public services, it seems not to be ease to implement the change detection because various functions are combined into it. So, to promote the use of the change detection in public services, the standard, the process and the method for the change detection in public services should be established. And the software which supports that will be very useful. This study aims to promote the use of satellite imagery in public services by building up the change detection process which are suitable for general public services and developing the change detection software to support the process. The software has been developed using ETRI Components for Satellite Image Processing to support the interoperability with other GIS software.

  • PDF

A Study on On-line 5 Degrees of Freedom Error Measurement using Laser Optical System (레이져 광학장치를 이용한 온라인 5 자유도 오차측정에 관한연구)

  • 김진상;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.375-378
    • /
    • 1995
  • Although laser interferometer measurement system has the advantage of range and accuracy, the traditional error measurement methods for geometric errors(two straightness and three angular errors) of a machine tool measures error components one at a time. It may also create an optical path difference and affect the measurement accuracy. In order to identify and compensate for geometric error of a moving body, an on-line measurement system for simultaneous detection of the five error components of a moving axis is required. An on-line measurement system with 5 degrees of freedom was developed for geometric error detection. Performance verification of the system was performed on an error generating mechanism. Experimental results show the feasibility of this system for identifying geometric errors of a side of machine tool.

  • PDF