• Title/Summary/Keyword: Component materials

Search Result 2,183, Processing Time 0.029 seconds

Influence of ZnO-Nb2O5 Substitution on Microwave Dielectric Properties of the ZrTi04 System

  • Kim, Woo-Sup;Kim, Joon-Hee;Kim, Jong-Han;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.4
    • /
    • pp.346-349
    • /
    • 2003
  • Microwave dielectric characteristics and physical properties of the new Zr$_{1-x}$ (Bn$_{1}$3/Nb$_{2/3}$)xTi $O_4$ (0.2$\leq$x$\geq$ 1.0) system have been investigated as a function of the amount of Bn$_{1}$3/Nb$_{2/3}$ $O_2$substitution. With increasing Bn$_{1}$3/Nb$_{2/3}$ $O_2$ content (x), two phase regions were observed: $\alpha$-Pb $O_2$ solid solution (x<0.4), mixture of the rutile type Zn$_{1}$3/Nb$_{2/3}$Ti $O_4$ and the $\alpha$-Pb $O_2$ solid solution (x$\geq$0.4). In the$\alpha$-Pb $O_2$solid solution region below x<0.4, the Q.f$_{0}$ value sharply increased and the Temperature Coefficient of the Resonant Frequency(TCF) decreased with increasing Bn$_{1}$3/Nb$_{2/3}$ $O_2$ contents while dielectric constant (K) showed nearly same value. In the mixture region above x$\geq$4, the dielectric constant and TCF increased with increasing Bn$_{1}$3/Nb$_{2/3}$ $O_2$ content. Zr$_{1-x}$ (Zn$_{1}$3/Nb$_{2/3}$)xTi $O_4$ materials have excellent microwave dielectric properties with K=44.0, Q.f$_{0}$ : 41000 GHz and TCF =-3.0 ppm/$^{\circ}C$ at x=0.35.=0.35. x=0.35.=0.35.

Development of Ternary Inorganic Binder System for Manufacturing High-Functional Ceramic Molds and Core (고기능성 세라믹 주형 및 중자 제작을 위한 3원계 무기 바인더 시스템 개발)

  • Hye-Yeong Park;Geun-Ho Cho;Hyun-Hee Choi;Bong Gu Kim;Eun-Hee Kim;SeungCheol Yang;Yeon-Gil Jung
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.538-544
    • /
    • 2022
  • In existing ceramic mold manufacturing processes, inorganic binder systems (Si-Na, two-component system) are applied to ensure the effective firing strength of the ceramic mold and core. These inorganic binder systems makes it possible to manufacture a ceramic mold and core with high dimensional stability and effective strength. However, as in general sand casting processes, when molten metal is injected at room temperature, there is a limit to the production of thin or complex castings due to reduced fluidity caused by the rapid cooling of the molten metal. In addition, because sodium silicate generated through the vitrification reaction of the inorganic binder is converted into a liquid phase at a temperature of 1,000 ℃. or higher, it is somewhat difficult to manufacture parts through high-temperature casting. Therefore, in this study, a high-strength ceramic mold and core test piece with effective strength at high temperature was produced by applying a Si-Na-Ti three-component inorganic binder. The starting particles were coated with binary and ternary inorganic binders and mixed with an organic binder to prepare a molded body, and then heat-treated at 1,000/1,350/1,500 ℃ to prepare a fired body. In the sample where the two-component inorganic binder was applied, the glass was liquefied at a temperature of 1,000 ℃ or higher, and the strength decreased. However, the firing strength of the ceramic mold sample containing the three-component inorganic binder was improved, and it was confirmed that it was possible to manufacture a ceramic mold and core via high temperature casting.

Understanding Growth mechanism of PEO coating using two-step oxidation process

  • Shin, Seong Hun;Rehman, Zeeshan Ur;Noh, Tae Hwan;Koo, Bon Heun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.173.2-173.2
    • /
    • 2016
  • A two-step oxidation method was applied on Al6061 to debate the growth mechanism of plasma electrolytic oxidation (PEO) coating. The specimens were first oxidized in the primary electrolyte solution {$Na_3PO_4$ (8g/l), NaOH (2g/l), consequently, the specimens were transferred into a different electrolyte {$K_2ZrF_6$ (8g/l), NaOH (2g/l), $Na_2SiF_6$ (0.5g/l)} for further oxidation. The processes was conducted for various processing times. It was found the second step electrolyte component were reached to inner layers, in contrast to the primary step components which were thrustle to the outer layer. The presence of the secondary component in the inner layers were significantly varied with processing time which suggest the change in growth properties with processing time. further more the inside growth of the secondary component confirmed the increasing trend in the downward growth of the coating layer. The corrosion and hardness properties of the coatings were found highly improved with change in growth features with increasing the processing time.

  • PDF

Effect of Initial Texture on the Development of Goss Orientation of Asymmetrically Rolled Steel Sheets (비대칭 압연한 강판의 GOSS 방위 발달에 미치는 초기 집합조직의 영향)

  • Lee, C.W.;Jeong, H.T.;Lee, D.N.;Kim, I.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.27-36
    • /
    • 2020
  • The Goss texture component of {110}<001> is well known as one of the best texture components to improve the magnetic properties of electrical steel sheets. The small amount of the Goss texture component is obtained at the surface of the steel sheet by shear deformation due to friction between the steel sheet and the roll during conventional symmetric rolling. This study aims to identify a method to obtain high intensity of the Goss texture component not only at the surface but in the whole layer of the steel sheet by shear deformation of asymmetric rolling. Low carbon steel sheets, which have different initial texture, were asymmetrically rolled by about 50%, 70%, and 80%. The pole figures of the top, center, and bottom layers of the initial and asymmetrically rolled low carbon steel sheets were measured by an X-ray diffractometer. Based on the measured pole figures of these samples, the intensities of the main texture components were analyzed for the initial and asymmetrically rolled low carbon steel sheets. As a result, the initial low carbon steel sheet with the γ-fiber component showed a higher intensity of the Goss texture component in the whole layer than the steel sheet with other texture components after asymmetric rolling.

Design and Implementation of UML-Based Material Management System for Automotive Part Company (자동차부품기업의 UML기반 자재관리시스템 설계 및 구현)

  • Park Jung-Hyuk;Seo Ki-Chul;Moon Tae-Soo
    • The Journal of Information Systems
    • /
    • v.12 no.2
    • /
    • pp.129-149
    • /
    • 2003
  • One of the important applications in Enterprise Resource Planning(ERP) systems is the Manufacturing Resource Planning(MRPII) system using Bill of Material(BOM). The manufacturing resource planning determines the quantity and timing of the production or purchase of subassemblies and raw materials needed to support the Master Production Scheduling(MPS). The bill of material is the recipe, a list of the materials needed to make a product. This paper intends to suggest a component-based materials management system using Unified Modeling Language(UML), as an application system for automobile part industry. Applying component based materials management systems designed with UML methodology, we analyzed the workflow and the document on materials management process from production planning to inventory management, and implemented a prototype of efficient materials management system, as a surrogate of existing material requirement planning(MRPI) system. To produce many other assemblies for a automobile part firm, component parts are assembled into subassemblies that are joined to assemble the finished product. Through the system suggested in this study, the level of inventory has cut down and the cost of inventory management has decreased. Also, the development method using UML makes the analysis and design phase to shorten in implementation period of MRPII system. The implementation of materials management system using CBD shows the ease of use in software reuse and the interoperability with corporate Internal information system. The result of applying object-oriented CBD technique is to minimize the risk of life cycle and facilitate the reuse of software as mentioned to limitation of information engineering methodology.

  • PDF

Degradation of Organic Component in MSW by Super-heated Steam (과열(過熱) 증기(蒸氣)를 이용한 국내 폐기물(廢棄物) 유기성(有機性) 성분의 분해(分解) 특성 연구)

  • Kim, Woo-Hyun;Roh, Seon-Ah;Min, Tai-Jin;Sung, Hyun-Je;Park, Seong-Bum;Jang, Ha-Na
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.10-17
    • /
    • 2009
  • Degradation of the organic component in the waste were carried out by superheated steam in a pressurized vessel. The effects of waste characteristics, reaction temperature and residence time on the degradation rate have been determined. The biodegradable organic components such as food and paper waste have been degraded, and plastics, wood and metal were remained without degradation. The degradation efficiency is decided by the desizing rate of the waste, and the waste mixture with 23% biodegradable organic component shows higher desizing rate than that of the 43% of the biodegradable organic component in a short residence time and the desizing rate is found to be 90% in the maximum condition.

Formation of Multi-Component Boride Coatings Containing V and/or Cr and Evaluation of Their Properties (바나듐 및 크롬을 포함하는 다 성분 Boride 코팅의 생성 및 특성 평가)

  • Lee, Euiyeol;Yoon, Sanghyun;Kim, Jongha
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.2
    • /
    • pp.211-217
    • /
    • 2016
  • Boride coating applied on steam turbine parts of power plants has provided good particle erosion resistance under temperature of $550^{\circ}C$, but it isn't able to protect the parts effectively any more in ultra super critical (USC) steam turbine which is being operated up to temperature of $650^{\circ}C$. To ensure stable durability for USC steam turbine parts, an alternative coating replacing boride coating should be developed. In this study, multi-component boride coatings containing elements such as chromium (Cr) and vanadium (V) were formed on base metal (B50A365B) using thermochemical treatment method called by pack cementation. The thermochemical treatments involve consecutive diffusion of boron(B) and Cr or/and V using pack powders containing diffusion element sources, activators and diluents. The top layer of Cr-boride coating is primarily consisted of $Cr_2B_3$ and $Cr_5B_3$, while that of V-boride coating is mostly consisted of $VB_2$ and $V_2B_3$. The (Cr,V)-boride coating is consisted of $Cr_2B_3$, $Cr_5B_3$ and $V_2B_3$ mostly. The top surfaces of 3 multi-component boride coatings show hardness of $3200-3400H_v$, which is much higher than that of boride, about $1600-2000H_v$. In 5 wt.% NaCl solution immersion tests, the multi-component boride coatings show much better corrosion resistance than boride coating.

Labor Productivity Model for Reinforced Concrete Construction Projects

  • Ho Myun Jang;Kyong Hoon Kim;Sang Hyeon Kim;Kyung Hwan Kim;Jae Jun Kim
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.983-989
    • /
    • 2009
  • This study aims to systematically identify direct and indirect factors that influence labor productivity and to build a model that mathematically quantifies them so as to efficiently manage and increase labor productivity in the construction work. This study was performed based on the productivity model for workers in reinforced concrete construction projects, because it aims to establish a general construction labor productivity model that reflects many factors that influence labor productivity. Using statistical analysis, we found that the components that significantly influence productivity were the worker component, the work characteristic component, the work technique component, the work management component, the equipment & materials component, and the work guide component, while the work delay components did not significantly influence productivity. In addition, a priority analysis was performed based on the components that showed statistically significant effects. The results of the analysis indicated that the influence of work management component and the work technique component is more than that of the worker component and the work characteristic component. The construction labor productivity model that was formulated in this study could be used for the determining the standard productivity during the initial planning stage, so the best strategy for increasing labor productivity could be formulated.

  • PDF

Characteristics study II of biological materials using pyrolysis-mass spectrometry (열분해 질량분석법을 이용한 생물학 물질의 특성 연구(II))

  • Choi, Sun-Kyung;Park, Young-Kyu;Park, Byeng-Hwang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.83-91
    • /
    • 2005
  • Pyrolysis-mass spectrometry has been used to characterize the 17 biological materials including bacteria and proteins. In this study, an in situ thermal-hydrolysis methylation(THM) procedure using tetramethylammonium hydroxide(TMAH) was employed. The biological materials are ionized using chemical ionization(CI) method with ethanol by ion trap mass spectrometer(ITMS), which attached with our own made pyrolyzer module, and then their pyrolysis mass spectra were obtained. The major distinct characteristic peaks were selected from all the range of mass spectra, and analyzed using principal component analysis(PCA) method to assess the classification/identification possibility of biological materials.

The Effects of the Structural Changes and Mechanical Properties of the Austenitized and Tempered Martensitic STS 410 Stainless Steel on Its Temper Embrittlement (STS 410 마르텐사이트계 Stainless 강의 템퍼취성과 조직 및 기계적 성질에 관한 연구)

  • S.H., Lee;T.H., Go;W.S., Lee;S.D., Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.6
    • /
    • pp.303-313
    • /
    • 2022
  • The purpose of this study was to test and analyze the effects of the mechanical properties and structural changes of the austenitized and tempered martensite STS 410 stainless steel containing 11.5~13%Cr and 0.10%C on its temper embrittlement. The STS 410 stainless steel test pieces for each 3 hours at 960℃, 1000℃ and then, tempered them for 2 hours at 300℃, 350℃, 400℃, 450℃, 500℃, 550℃, 600℃, 650℃ and 700℃ known as the intervals vulnerable to temper embrittlement to observe the changes of their structures and mechanical properties. In case autenitizing was insufficient due to lower temperature of thermal treatment for solution, unsolved carbides and ferrites remained in the structure after quenching, which meant that the parts could wear out and corrode to embrittle at the room temperature. Elongation and impact energy changes with Tempering conditions showed minimum results in range of 400~500℃. The decrease in elongation and impact energy at 400~500℃ was the hardening effect of the subgrain due to the precipitation of many M3C or M7C3, M23C6. And STS 410 stainless steel corrosion tested in 10% NaCl solution at 30℃ after tempering treatment. The degree of corrosion sensitization showed increasing tendency with increase of tempering temperature and Cr carbide precipitation were observed in grain boundary.