• Title/Summary/Keyword: Component framework

Search Result 512, Processing Time 0.023 seconds

Development of an Advanced Rotorcraft Preliminary Design Framework

  • Lim, Jae-Hoon;Shin, Sang-Joon;Kim, June-Mo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.134-139
    • /
    • 2009
  • Various modules are generally combined with one another in order to perform rotorcraft preliminary design and its optimization. At the stage of the preliminary design, analysis fidelity is less important than the rapid assessment of a design is. Most of the previous researchers attempted to implement sophisticated applications in order to increase the fidelity of analysis, but the present paper focuses on a rapid assessment while keeping the similar level of fidelity. Each small-sized module will be controlled by an externally-operated global optimization module. Results from each module are automatically handled from one discipline to another which reduces the amount of computational effort and time greatly when compared with manual execution. Automatically handled process decreases computational cycle and time by factor of approximately two. Previous researchers and the rotorcraft industries developed their own integrated analysis for rotorcraft design task, such as HESCOMP, VASCOMP, and RWSIZE. When a specific mission profile is given to these programs, those will estimate the aircraft size, performance, rotor performance, component weight, and other aspects. Such results can become good sources for the supplemental analysis in terms of stability, handling qualities, and cost. If the results do not satisfy the stability criteria or other constraints, additional sizing processes may be used to re-evaluate rotorcraft size based on the result from stability analysis. Trade-off study can be conducted by connecting disciplines, and it is an important advantage in a preliminary design study. In this paper among the existing rotorcraft design programs, an adequate program is selected for a baseline of the design framework, and modularization strategy will be applied and further improvements for each module be pursued.

Construction of a Adaptive Domain Profile Parser in the SCA (SCA에서 적응형 도메인 프로파일 파서의 구축 방법)

  • Bae, Myung-Nam;Lee, Byung-Bog;Park, Ae-Soon;Lee, In-Hwan;Kim, Nae-Soo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.1
    • /
    • pp.103-111
    • /
    • 2009
  • In SCA, the core framework must include the domain parser to parse the domain profile and thus reconstructs the platform on the time including the starting of the platform, the initialization of the new radio, and etc. The domain profile is described in XML and it includes the characteristics about the software component or the hardware device in a platform. Elementarily, the core framework has to have within the domain profile parser in order to parse the domain profile. In this paper, in order to apply to the limited environment like the mobile terminal, we propose the method for reducing the size of the domain profile parser and for strengthening the independency of the XML parser vendor to have with the domain profile parser. Therefore, domain profile parser can be solve the problem like the overhead about the DOM tree creation due to the repetitive parsing of the domain profile, the compatibility degradation by the specific XML parser vender, the dependency about the domain profile technique, and etc.

Quality monitoring of complex manufacturing systems on the basis of model driven approach

  • Castano, Fernando;Haber, Rodolfo E.;Mohammed, Wael M.;Nejman, Miroslaw;Villalonga, Alberto;Lastra, Jose L. Martinez
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.495-506
    • /
    • 2020
  • Monitoring of complex processes faces several challenges mainly due to the lack of relevant sensory information or insufficient elaborated decision-making strategies. These challenges motivate researchers to adopt complex data processing and analysis in order to improve the process representation. This paper presents the development and implementation of quality monitoring framework based on a model-driven approach using embedded artificial intelligence strategies. In this work, the strategies are applied to the supervision of a microfabrication process aiming at showing the great performance of the framework in a very complex system in the manufacturing sector. The procedure involves two methods for modelling a representative quality variable, such as surface roughness. Firstly, the hybrid incremental modelling strategy is applied. Secondly, a generalized fuzzy clustering c-means method is developed. Finally, a comparative study of the behavior of the two models for predicting a quality indicator, represented by surface roughness of manufactured components, is presented for specific manufacturing process. The manufactured part used in this study is a critical structural aerospace component. In addition, the validation and testing are performed at laboratory and industrial levels, demonstrating proper real-time operation for non-linear processes with relatively fast dynamics. The results of this study are very promising in terms of computational efficiency and transfer of knowledge to manufacturing industry.

Modeling Adaptive Context-Based Contents Navigation of Web Applications (웹 응용의 적응하는 문맥 기반 컨텐츠 항해 모델링)

  • Lee, Byung-Jeong;Hong, Ji-Won
    • Journal of Digital Contents Society
    • /
    • v.8 no.1
    • /
    • pp.93-106
    • /
    • 2007
  • Web Applications are rapidly increasing and the structure becomes very complicated. However, when users explore such complex Web applications, they cannot often grasp the current location and get the information that they want. Therefore, a novel approach to model the navigation of Web application contents is required. In this study, a framework has been presented for modeling adaptive context-based contents navigation of Web applications. The framework performs activities including navigation analysis, navigation design, and navigation realization. first, in navigation analysis domain is analyzed by using use case, focusing on navigation. Next, in navigation design three models have been produced: a navigation information model, a profile, and a navigation interface model. Finally, in navigation realization a Webpage navigation model and a component navigation model have been produced. In this work, several formal definitions and rules for checking validity of navigation model have also been provided.

  • PDF

A Shipyard Layout Design System by Simulation (시뮬레이션 기반 조선소 레이아웃 설계 시스템 개발)

  • Song, Young-Joo;Lee, Dong-Kun;Woo, Jong-Hun;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.441-454
    • /
    • 2008
  • Shipyard design and equipments layout problem, which are directly linked with the productivity of ship production, is an important issue serving as reference data of production plan for later massive production of ships. So far in many cases, design of a shipyard has been relying on the experienced engineers in shipbuilding, resulting in sporadic and poorly organized processes. And thus, economic losses as well as trials and errors in that accord have been pointed out as inevitable problems. This paper extracts a checklist of major elements to fine tune the shipbuilding yard designing process and the input/output data based on the simulation based shipbuilding yard layout designing framework and methodology proposed in existing researches, and executed initial architecture to develop software that integrates all the relevant processes and designing tools. In this course, both user request and design data by the steps are arranged and organized in the proposed layout design template form. In addition, simulation is done based on the parent shipbuilding process planning and scheduling data of the ship product, shipbuilding process and work stage facilities that constitute shipbuilding yard, and design items are verified and optimized with the layout and equipment list showing optimal process planning and scheduling effects. All the contents of this paper are based on simulation based shipbuilding yard layout designing methodology, and initial architecture processes are based on object oriented development methodology and system engineering methods.

Network-based Simulation System Framework for the Safety Assessment of Ship (선박의 안전성 평가를 위한 네트워크 기반의 시뮬레이션 시스템 프레임워크)

  • Lee K.-H.;Kim H.-S.;Han S.-W.;Park J.-H;Oh J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.5
    • /
    • pp.356-364
    • /
    • 2005
  • As a ritual of modern people is getting higher, the safety assessment of the structure related to people has become the most important part in the process of the design. Especially, in the case of a ship, as regulations about the safety of passengers and the pollution in the ocean are strictly reinforcing, the safety assessment has become the most important part in the process of the design. However, because the established safety assessment is mostly depend on the experienced theory, it is so difficult to assess the safety considering a lot of situations such as various ocean environments, the mistake of sailors and emergency situations. As the way to solve this problem, lately the study of the simulation using a computer has been processed. In this paper, we suggested network-based simulation system framework using HLA (High Level Architecture) among many kind of simulations to assess the safety of the ship. Because HLA has already become a standard of the future simulation system in the U.S. DoD(Department of Defense) and Korea army, we expect to raise the possibility in the future. In addition, because HLA makes a standard of documents and a reused component(Federate) of simulation(Federation) by OMT(Object Model Template) and RTI(Runtime Infrastructure), we expect that this study will be developing the safety assessment of ship as well as operation in warship and cooperation with another applications.

Assessment of vertical wind loads on lattice framework with application to thunderstorm winds

  • Mara, T.G.;Galsworthy, J.K.;Savory, E.
    • Wind and Structures
    • /
    • v.13 no.5
    • /
    • pp.413-431
    • /
    • 2010
  • The focus of this article is on the assessment of vertical wind vector components and their aerodynamic impact on lattice framework, specifically two distinct sections of a guyed transmission tower. Thunderstorm winds, notably very localized events such as convective downdrafts (including downbursts) and tornadoes, result in a different load on a tower's structural system in terms of magnitude and spatial distribution when compared to horizontal synoptic winds. Findings of previous model-scale experiments are outlined and their results considered for the development of a testing rig that allows for rotation about multiple body axes through a series of wind tunnel tests. Experimental results for the wind loads on two unique experimental models are presented and the difference in behaviour discussed. For a model cross arm with a solidity ratio of approximately 30%, the drag load was increased by 14% when at a pitch angle of $20^{\circ}$. Although the effects of rotation about the vertical body axis, or the traditional 'angle of attack', are recognized by design codes as being significant, provisions for vertical winds are absent from each set of wind loading specifications examined. The inclusion of a factor to relate winds with a vertical component to the horizontal speed is evaluated as a vertical wind factor applicable to load calculations. Member complexity and asymmetric geometry often complicate the use of lattice wind loading provisions, which is a challenge that extends to future studies and codification. Nevertheless, the present work is intended to establish a basis for such studies.

Validation study on numerical simulation of RC response to close-in blast with a fully coupled model

  • Gong, Shunfeng;Lu, Yong;Tu, Zhenguo;Jin, Weiliang
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.283-300
    • /
    • 2009
  • The characteristic response of a structure to blast load may be divided into two distinctive phases, namely the direct blast response during which the shock wave effect and localized damage take place, and the post-blast phase whereby progressive collapse may occur. A reliable post-blast analysis depends on a sound understanding of the direct blast effect. Because of the complex loading environment and the stress wave effects, the analysis on the direct effect often necessitates a high fidelity numerical model with coupled fluid (air) and solid subdomains. In such a modelling framework, an appropriate representation of the blast load and the high nonlinearity of the material response is a key to a reliable outcome. This paper presents a series of calibration study on these two important modelling considerations in a coupled Eulerian-Lagrangian framework using a hydrocode. The calibration of the simulated blast load is carried out for both free air and internal explosions. The simulation of the extreme dynamic response of concrete components is achieved using an advanced concrete damage model in conjunction with an element erosion scheme. Validation simulations are conducted for two representative scenarios; one involves a concrete slab under internal blast, and the other with a RC column under air blast, with a particular focus on the simulation sensitivity to the mesh size and the erosion criterion.

Sensemaking and Human Judgment Under Dynamic Environment (급변하는 환경에서의 인간의 의사결정과 상황파악)

  • Seong, Youn-Ho;Park, Eui-H.;Lee, Hwa‐Ki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.49-60
    • /
    • 2006
  • Technological encroachment provides human operators with flood of information that must be analyzed to understand the environment and make judgments that lead to strategic actions. Further, the environment is not static and therefore uncertain, changing its aspect dynamically. Complexity accompanied with its dynamics imposes substantial difficulty to human operators' task. Criticality of having situational understanding becomes more important than ever. Situationalunderstanding requires the human operators possessing tacit knowledge in order for them to make the sense out of the situation while interacting with information from many heterogeneous sources, the notion of sensemaking. Sensemaking refers to the process of developing mental framework to assemble pieces of information representing different aspects of the environment that can be used to develop one's own actionable knowledge to implement their judgments in the uncertain environment. Therefore, judgment process and performance is a key component of sensemaking process. Among many judgment and decision making models, the lens model with its extension can be utilized to partially describe the judgmental aspect of sensemaking. One of the lens model parameters, unmodeled knowledge, can be a corresponding quantitative measure for the tacit knowledge that plays an important role in sensemaking. In this paper, a comprehensive literature for sensemaking is provided to formally define the notion of sensemaking in the military domain. Also, it is proposed that there is a crucial link between the sensemaking and human judgment process and performance from the lens model perspective. Potential implications for experimental framework are also proposed.

Bridging the Gap Between Science and Industry: The Fraunhofer Model

  • Klingner, Raoul;Behlau, Lothar
    • STI Policy Review
    • /
    • v.3 no.2
    • /
    • pp.130-151
    • /
    • 2012
  • Fraunhofer was founded in 1949 and grew into Europe's largest application-oriented research organization. Fraunhofer currently employs over 20,000 members in Germany, is internationally networked, and manages an R&D budget of over 1,8 Billion Euros per year. An important step for Fraunhofer to become an integral component of the German innovation system was the introduction of the Fraunhofer Model of financing based on a performance-related system of financial management. The underlying model of the allocation and distribution of public funding to Fraunhofer that is subsequently allotted to specific research groups is one of the success factors of Fraunhofer. Fraunhofer is proud of its decentralized organizational model. Fraunhofer is comprised of 60 Institutes in Germany working in different fields, under one legal framework, and with a strong brand value. Every Fraunhofer Institute is affiliated with a German University and every institute director simultaneously holds a chair at the affiliated university. It is a challenge for the headquarter organization to balance the intended competition of individual Fraunhofer Institutes with complementarity cooperation in science among Fraunhofer-Institutes, especially when coming from different knowledge domains; however, this goal results in a significant advantage. The unique strengths of Fraunhofer offer system solutions in a world with increasingly complex R&D challenges. While growing to become the largest organization on Europe to focus on applied research it is the challenge to remain an agile organization that is flexible in organizational structure. Fraunhofer has reached a well-recognized position in the European innovation landscape. It is often referred to by science and governments as a role model for innovation policy and a key element of the latest successes in the German economy that has recovered quicker from the latest economic crisis than most other western economies. The paper explains Fraunhofer as an organizational paradigm and its underlying management model to elaborate on the challenges of managing a research organization. We wish to show how it is possible to transfer the management model and philosophy of Fraunhofer to innovation systems with different framework conditions and challenges. A universal conclusion may be drawn based on the description of Fraunhofer; however, changes in existing structures and innovation systems cannot be implemented over night.