• Title/Summary/Keyword: Component based modelling

Search Result 51, Processing Time 0.028 seconds

- A Component-Based Manufacturing Information Systems for DFM Using UML - (UML을 이용한 컴포넌트 기반의 DFM을 위한 제조정보 시스템의 개발)

  • 김진대;이홍희
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.2
    • /
    • pp.75-85
    • /
    • 2003
  • Manufacturing firms have adapted seriously the Design for Manufacture and Assembly (DFMA) techniques which consider concurrently all factors related to the product development by using effective communications and sharing of information on product development processes. This study performed modelling and characterizing the data related to product manufacturing information for Design for Manufacture(DFM) evaluation and analysis. It adapted component-based development method for communicating and managing manufacturing information among distributed manufacturing organizations. Introducing component-based development offers safety and speed to network based system. This development using Unified Modelling Language(UML) provides efficient way for reconstruction and distribution of applications. Also, the integration of database and component into the internet environment enables to communicate and manage effectively manufacturing information for DFM evaluation and analysis at any place in the world. Therefore this system can make it more reasonable that evaluating, analyzing, and effective decision making of product design using DFM technique.

The Development of a finite-Element Modelling and Component Mode Synthesis Method for High-Speed railway Passenger Cars (고속전철 객차를 위한 유한요소모델링 및 모드합성기법의 개발)

  • 장경진;김홍준;이상민;박영필
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.233-240
    • /
    • 1998
  • In the design of the high-speed railway vehicles of low noise and vibration characteristics, it is desirable to develop efficient and systematic procedures for analyzing large structures. In this paper, some finite-element modelling techniques and an efficient analytical method are proposed for this purpose. The analytical method is based on substructuring approach such as a free-interface method and a generalized synthesis algorithm. In final, the proposed approaches are applied to the finite-element modelling, modal analysis and subsequent model updating procedures of the high-speed railway intermediate trailers.

  • PDF

Development of a Truss Structure Analysis Model based on Cellular Automata and Object-oriented Simulation Environment (셀룰러 오토마타와 객체기반 시뮬레이션 환경에 의한 트러스 구조의 해석모델 개발)

  • Kim, Taegon;Lee, JeongJae;Suh, Kyo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.1-9
    • /
    • 2014
  • The aim of this study is to develop a simulation model for analyzing 2D truss structure using Generic Agricultural System Simulator (GASS). Although the truss is simple structure, numerical methods based on matrix analysis are cumbersome and complicated. This study suggests simple and convenient methods to remove calculating steps for whole stiffness matrices. The simulation environment based on independency of object-oriented components on GASS consists of component development and component deploy stages. A component for a truss structure is implemented based on equilibrium equations at nodes. The simulator can analyze truss structures through deploying components with attributes and links. The examples using GASS show intuitive graphical results of the movements of truss nodes.

Effects of sheds and cemented joints on seismic modelling of cylindrical porcelain electrical equipment in substations

  • Li, Sheng;Tsang, Hing-Ho;Cheng, Yongfeng;Lu, Zhicheng
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.55-65
    • /
    • 2017
  • Earthquake resilience of substations is essential for reliable and sustainable service of electrical grids. The majority of substation equipment consists of cylindrical porcelain components, which are vulnerable to earthquake shakings due to the brittleness of porcelain material. Failure of porcelain equipment has been repeatedly observed in recent earthquakes. Hence, proper seismic modelling of porcelain equipment is important for various limit state checks in both product manufacturing stage and detailed substation design stage. Sheds on porcelain core and cemented joint between porcelain component and metal cap have significant effects on the dynamic properties of the equipment, however, such effects have not been adequately parameterized in existing design guidelines. This paper addresses this critical issue by developing a method for taking these two effects into account in seismic modelling based on numerical and analytical approaches. Equations for estimating the effects of sheds and cemented joint on flexural stiffness are derived, respectively, by regression analyses based on the results of 12 pieces of full-scale equipment in 500kV class or higher. The proposed modelling technique has further been validated by shaking table tests.

A Simplified Steel Beam-To-Column Connection Modelling Approach and Influence of Connection Ductility on Frame Behaviour in Fire

  • Shi, Ruoxi;Huang, Shan-Shan;Davison, Buick
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.343-362
    • /
    • 2018
  • A simplified spring connection modelling approach for steel flush endplate beam-to-column connections in fire has been developed to enable realistic behaviour of connections to be incorporated into full-scale frame analyses at elevated temperature. Due to its simplicity and reliability, the proposed approach permits full-scale high-temperature frame analysis to be conducted without high computational cost. The proposed simplified spring connection modelling approach has been used to investigate the influence of connection ductility (both axial and rotational) on frame behaviour in fire. 2D steel and 3D composite frames with a range of beam spans were modelled to aid the understanding of the differences in frame response in fire where the beam-to-column connections have different axial and rotational ductility assumptions. The modelling results highlight that adopting the conventional rigid or pinned connection assumptions does not permit the axial forces acting on the connections to be accurately predicted, since the axial ductility of the connection is completely neglected when the rotational ductility is either fully restrained or free. By accounting for realistic axial and rotational ductilities of beam-to-column connections, the frame response in fire can be predicted more accurately, which is advantageous in performance-based structural fire engineering design.

Regression-based algorithms for exploring the relationships in a cement raw material quarry

  • Tutmez, Bulent;Dag, Ahmet
    • Computers and Concrete
    • /
    • v.10 no.5
    • /
    • pp.457-467
    • /
    • 2012
  • Using appropriate raw materials for cement is crucial for providing the required products. Monitoring relationships and analyzing distributions in a cement material quarry are important stages in the process. CaO, one of the substantial chemical components, is included in some raw materials such as limestone and marl; furthermore, appraising spatial assessment of this chemical component is also very critical. In this study, spatial evaluation and monitoring of CaO concentrations in a cement site are considered. For this purpose, two effective regression-based models were applied to a cement quarry located in Turkey. For the assessment, some spatial models were developed and performance comparisons were carried out. The results show that the regression-based spatial modelling is an efficient methodology and it can be employed to evaluate spatially varying relationships in a cement quarry.

A Simulation on the Weapon System of Rotorcraft for Improving the Effects of Korean Future Combat System(FCS) (한국형 미래전투체계 효과도 분석을 위한 회전익 무장체계 시뮬레이션)

  • Hong, Jungwan;Park, Sang C.;Kwon, Yongjin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.501-506
    • /
    • 2013
  • This research is to develop a simulation framework to gauge the mission effectiveness of the rotorcraft system that will be a part of Korean future combat system. The rotorcraft system comprises of many subsystems that are very time-consuming and tedious to model. Each subsystem and its characteristics have been modeled using component-based modeling techniques, which enhances its reusability. The entire system is then constructed from the individually modeled component, which significantly reduces the modelling time. The mission effectiveness of the rotorcraft system is simulated using the developed models, and the output indicates that the methodology proposed in this study is useful, which will be suitable for the modeling and simulation of Korean future combat system.

Model Checking for Joint Modelling of Mean and Dispersion (평균과 산포의 동시 모형화에 대한 모형검토)

  • Ha, Il-Do;Lee, Woo-Dong;Cho, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.195-209
    • /
    • 1997
  • The joint modelling of mean and dispersion in quasi-likelihood models which greatly extend the scope of generalized linear models, is required in case that the dispersion parameter, the variance component of response variables, is not constant but changes by depending on any covariates. In this paper, by using statistical package GENSTAT(release 5.3.2, 1996) which makes a easily analyze real data through this joint modelling, we mention necessities that must consider this joint modelling rather than existing mean models through model checking based on graphic methods for esterase assay data introduced by Carrol and Ruppert(1987, pp.46-47), and then study methods finding reasonable joint model of mean and dispersion for this data.

  • PDF

Modelling dowel action of discrete reinforcing bars for finite element analysis of concrete structures

  • Kwan, A.K.H.;Ng, P.L.
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.19-36
    • /
    • 2013
  • In the finite element analysis of reinforced concrete structures, discrete representation of the steel reinforcing bars is considered advantageous over smeared representation because of the more realistic modelling of their bond-slip behaviour. However, there is up to now limited research on how to simulate the dowel action of discrete reinforcing bars, which is an important component of shear transfer in cracked concrete structures. Herein, a numerical model for the dowel action of discrete reinforcing bars is developed. It features derivation of the dowel stiffness based on the beam-on-elastic-foundation theory and direct assemblage of the dowel stiffness matrix into the stiffness matrices of adjoining concrete elements. The dowel action model is incorporated in a nonlinear finite element program based on secant stiffness formulation and application to deep beams tested by others demonstrates that the incorporation of dowel action can improve the accuracy of the finite element analysis.

Dynamic Simulation and Modelling of the Switched Reluctance Motor (SRM의 Dynamic Simulation과 Modelling에 관한 연구)

  • Lee Ju-Hyun;Chen Hao;Ahn Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.922-925
    • /
    • 2004
  • The paper presents the component parts and their models of the Switched Reluctance motor drive system with the angle position-current chopping control and with the fixed angle pulse width modulation control. The calculation of the parameters and the simulated models based on the MATLAB SIMULINK software package are introduced by a four-phase 8/6 structure prototype with the four-phase asymmetric bridge power converter. The simulation of the prototype in the course of starting is made by the simulated models at the different control strategies and the different given rotor speed.

  • PDF