• 제목/요약/키워드: Component Scale

검색결과 1,043건 처리시간 0.027초

와이블 분포를 이용한 다기능 다중상태 대기시스템의 신뢰도 분석 (Reliability Analysis of Multi-functional Multi-state Standby System Using Weibull Distribution)

  • 김지혜;정영배
    • 산업경영시스템학회지
    • /
    • 제40권3호
    • /
    • pp.138-147
    • /
    • 2017
  • As the functions and structure of the system are complicated and elaborated, various types of structures are emerging to increase reliability in order to cope with a system requiring higher reliability. Among these, standby systems with standby components for each major component are mainly used in aircraft or power plants requiring high reliability. In this study, we consider a standby system with a multi-functional standby component in which one standby component simultaneously performs the functions of several major components. The structure of a parallel system with multifunctional standby components can also be seen in real aircraft hydraulic pump systems and is very efficient in terms of weight, space, and cost as compared to a basic standby system. All components of the system have complete operation, complete failure, only two states, and the system has multiple states depending on the state of the component. At this time, the multi-functional standby component is assumed to be in a non-operating standby state (Cold Standby) when the main component fails. In addition, the failure rate of each part follows the Weibull distribution which can be expressed as increasing type, constant type, and decreasing type according to the shape parameter. If the Weibull distribution is used, it can be applied to various environments in a realistic manner compared to the exponential distribution that can be reflected only when the failure rate is constant. In this paper, Markov chain analysis method is applied to evaluate the reliability of multi-functional multi-state standby system. In order to verify the validity of the reliability, a graph was generated by applying arbitrary shape parameters and scale parameter values through Excel. In order to analyze the effect of multi-functional multi-state standby system using Weibull distribution, we compared the reliability based on the most basic parallel system and the standby system.

Seismic response of a high-rise flexible structure under H-V-R ground motion

  • We, Wenhui;Hu, Ying;Jiang, Zhihan
    • Earthquakes and Structures
    • /
    • 제23권2호
    • /
    • pp.169-181
    • /
    • 2022
  • To research the dynamic response of the high-rise structure under the rocking ground motion, which we believed that the effect cannot be ignored, especially accompanied by vertical ground motion. Theoretical analysis and shaking table seismic simulation tests were used to study the response of a high-rise structure to excitation of a H-V-R ground motion that included horizontal, vertical, and rocking components. The use of a wavelet analysis filtering technique to extract the rocking component from data for the primary horizontal component in the first part, based on the principle of horizontal pendulum seismogram and the use of a wavelet analysis filtering technique. The dynamic equation of motion for a high-rise structure under H-V-R ground motion was developed in the second part, with extra P-△ effect due to ground rocking displacement was included in the external load excitation terms of the equation of motion, and the influence of the vertical component on the high-rise structure P-△ effect was also included. Shaking table tests were performed for H-V-R ground motion using a scale model of a high-rise TV tower structure in the third part, while the results of the shaking table tests and theoretical calculation were compared in the last part, and the following conclusions were made. The results of the shaking table test were consistent with the theoretical calculation results, which verified the accuracy of the theoretical analysis. The rocking component of ground motion significantly increased the displacement of the structure and caused an asymmetric displacement of the structure. Thus, the seismic design of an engineering structure should consider the additional P-△ effect due to the rocking component. Moreover, introducing the vertical component caused the geometric stiffness of the structure to change with time, and the influence of the rocking component on the structure was amplified due to this effect.

Detecting Boundaries between Different Color Regions in Color Codes

  • Kwon B. H.;Yoo H. J.;Kim T. W.
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 학술대회지
    • /
    • pp.846-849
    • /
    • 2004
  • Compared to the bar code which is being widely used for commercial products management, color code is advantageous in both the outlook and the number of combinations. And the color code has application areas complement to the RFID's. However, due to the severe distortion of the color component values, which is easily over $50{\%}$ of the scale, color codes have difficulty in finding applications in the industry. To improve the accuracy of recognition of color codes, it'd better to statistically process an entire color region and then determine its color than to process some samples selected from the region. For this purpose, we suggest a technique to detect edges between color regions in this paper, which is indispensable for an accurate segmentation of color regions. We first transformed RGB color image to HSI and YIQ color models, and then extracted I- and Y-components from them, respectively. Then we performed Canny edge detection on each component image. Each edge image usually had some edges missing. However, since the resulting edge images were complementary, we could obtain an optimal edge image by combining them.

  • PDF

A Study of Estuarine Flow using the Roving ADCP Data

  • Kang, Ki-Ryong;Iorio, Daniela Di
    • Ocean Science Journal
    • /
    • 제43권2호
    • /
    • pp.81-90
    • /
    • 2008
  • A study of estuarine flows during a neap tide was performed using 13-hour roving acoustic Doppler current profiles (ADCP) and conductivity-temperature-depth (CTD) profiles in the Altamaha River estuary, Georgia, U.S.A. The least-squared harmonic analysis method was used to fit the tidal ($M_2$) component and separate the flow into two components: the tidal and residual ($M_2$-removed) flows. We applied this method to depth-averaged data. Results show that the $M_2$ component demonstrates over 95% of the variability of observation data. As the flow was dominated by the $M_2$ tidal component in a narrow channel, the tidal ellipse distribution was essentially a back-and-forth motion. The amplitude of $M_2$ velocity component increased slightly from the river mouth (0.45 m/sec) to land (0.6 m/sec) and the phase showed fairly constant values in the center of the channel and rapidly decreasing values near the northern and southern shoaling areas. The residual flow and transport calculated from depth-averaged flow shows temporal variability over the tidal time scale. Strong landward flows appeared during slack waters which may be attributed to increased baroclinic forcing when turbulent mixing decreases.

플랫폼 독립적 컴포넌트 기반 개발을 위한 XML-SOAP 활용 객체지향프레임워크 SOAF (An Object-oriented Framework SOAF utilizing MXL-SOAP for Platform-Independent Component-Based Development)

  • 장진영;최용선
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권8호
    • /
    • pp.969-979
    • /
    • 2004
  • 최근 대부분의 대규모 기업정보시스템은 기능재활용성, 다종의 시스템 리소스, 다중 플랫폼 등을 지원하기 위해 다층구조의 미들웨어 또는 프레임워크를 기반으로 하고 있다. 그러나 이러한 다층 및 다중 플랫폼 분산 구조는 미들웨어간의 컴포넌트 및 메타정보에 대한 상호운용성 문제를 제기한다. 본 논문은 추상화 프로그래밍 스타일과 XML-SOAP에 기반한 컴포넌트 보존 방법을 통해서, 다종의 리소스를 지원하고 플랫폼에 독립적인 컴포넌트 기반 개발을 가능케 하는 객체지향프레임워크 SOAF (Simple Object Application Framework)을 제시하고 그 아키텍쳐 및 주요 특징에 대해 소개한다.

파이로테크닉 장치의 고폭 폭발성능 정밀 하이드로다이나믹 해석 (A Full Scale Hydrodynamic Simulation of High Explosion Performance for Pyrotechnic Device)

  • 김보훈;여재익
    • 한국시뮬레이션학회논문지
    • /
    • 제28권2호
    • /
    • pp.1-14
    • /
    • 2019
  • 고에너지 구성 요소 시스템의 설계를 위하여 고폭화약의 폭발 반응을 엄밀하게 모사할 수 있는 실제 규모의 하이드로다이나믹 해석을 수행하였다. 폭발성능 정밀 해석 SW는 고에너지 물질의 충격 민감도를 정량화하기 위한 반응 유동 모델을 검증하고 일련의 화약 트레인을 통과하는 충격파 전달을 예측하기 위해 개발되었다. 파이로테크닉 장치는 여폭약(HNS+HMX), 격벽(STS), 수폭약(RDX), 파이로테크닉 추진제(BPN)로 구성된다. 추진제 연소로 인하여 생성된 고압의 연소 가스는 충격파와 저밀도파 간 간섭에 의해 유도된 고유의 진동 유동 특성을 파악하기 위하여 10 cc 밀폐형 챔버에 유입된다. 특정 주파수(${\omega}_c=8.3kHz$)에서의 피크 특성을 검증하기 위하여 실험 및 계산으로 측정된 압력 진동을 비교하였다. 본 연구에서는 고폭화약의 폭발반응과 추진제의 폭연반응, 비-반응 금속의 변형에 관하여 단계별 수치해석 기법들을 충격 물리 해석 SW로 구현함으로써 고에너지 물질 시스템에 대한 대규모 하이드로다이나믹 시뮬레이션을 용이하게 하였다. 개발된 고폭화약 폭발성능 정밀 해석 SW를 고에너지 구성 요소 시스템의 파이로테크닉 연소 반응 M&S에 적용하여 실험 결과와 비교함으로써 검증하였다.

운동요법이 혈액투석 환자의 체력과 건강관련 삶의 질에 미치는 효과 (Effects of Exercise Intervention on Physical Fitness and Health-relalted Quality of Life in Hemodialysis Patients)

  • 장은정;김희승
    • 대한간호학회지
    • /
    • 제39권4호
    • /
    • pp.584-593
    • /
    • 2009
  • Purpose: The purpose of this study was to investigate the effect of stretching, muscle strengthening, and walking exercise on the cardiopulmonary function and health-related quality of life in hemodialysis patients. Methods: Twenty-one patients in the intervention and the control group participated in the exercise respectively on maintenance hemodialysis at four university hospitals. The exercise was composed of 20 to 60 min per session, 3 sessions a week for 12 weeks. The effect of exercise was assessed by cardiopulmonary function (peak oxygen uptake, peak ventilation, peak respiration rate, maximal heart rate, and exercise duration) using a cycle ergometer. Grip strength was measured by dynamometer, and flexibility was measured by sit and reach measuring instrument. Health-related quality of life was measured using Medical Outcomes Study Short Form-36. Results: Peak oxygen uptake, peak ventilation, peak respiration rate, exercise duration, grip strength, flexibility, and physical component scale were significantly improved in the intervention group after 12 week's exercise compared to the control group. Conclusion: These findings indicate the exercise can improve cardiopulmonary function, grip strength, flexibility, and physical component scale of health-related quality of life in hemodialysis patients.

인테리어 내장재의 고급감에 관한 시각 및 촉각변수의 수량화 모형 개발 (Development of Quantification Models on Visual and Tactile Design Characteristics for the Luxuriousness of Interior Covering Materials)

  • 반상우;윤명환
    • 대한산업공학회지
    • /
    • 제33권4호
    • /
    • pp.393-401
    • /
    • 2007
  • Affective aspects of design attributes such as color, Pattern, and texture are important to the overall impression and the success of interior products. Among all the interior materials, wallpapers and flooring materials take up largest construction area and they are main components in creating affective impression for customers. This study aims to investigate the relationship between luxuriousness and related affective variables and design elements of wallpapers and flooring materials. The approach consists of 3 steps: (1) selecting related affective features and product design attributes through a literature survey, opinion of expert panel, and focus group interview, (2) conducting evaluation experiments, and (3) developing Kansei models using multivariate statistical analysis and analyzing critical attributes. Evaluation experiment was conducted using a questionnaire made up of 7-point scale and 100-point scale and 30 housewives and 20 interior designers participated in the evaluation experiment. The result of evaluation was analyzed through principal component regression and quantification I analysis. As a result of analyzing the survey data, the relationship between luxuriousness and related affective features and product design attributes was identified, moreover a optimal combination of the design component was identified. Consequently, it is expected that the results of the study would be a basis of the concept of emotion-based design by giving insights about how customers perceive the luxuriousness and suggesting the optimal combination, and providing specific quantitative design guidelines.

FAULT DETECTION, MONITORING AND DIAGNOSIS OF SEQUENCING BATCH REACTOR FOR INTEGRATED WASTEWATER TREATMENT MANAGEMENT SYSTEM

  • Yoo, Chang-Kyoo;Vanrolleghem, Peter A.;Lee, In-Beum
    • Environmental Engineering Research
    • /
    • 제11권2호
    • /
    • pp.63-76
    • /
    • 2006
  • Multivariate analysis and batch monitoring on a pilot-scale sequencing batch reactor (SBR) are described for integrated wastewater treatment management system, where a batchwise multiway independent component analysis method (MICA) are used to extract meaningful hidden information from non-Gaussian wastewater treatment data. Three-way batch data of SBR are unfolded batch-wisely, and then a non-Gaussian multivariate monitoring method is used to capture the non-Gaussian characteristics of normal batches in biological wastewater treatment plant. It is successfully applied to an 80L SBR for biological wastewater treatment, which is characterized by a variety of error sources with non-Gaussian characteristics. The batchwise multivariate monitoring results of a pilot-scale SBR for integrated wastewater treatment management system showed more powerful monitoring performance on a WWTP application than the conventional method since it can extract non-Gaussian source signals which are independent and cross-correlation of variables.

BGA to CSP to Flip Chip-Manufacturing Issues

  • Caswell, Greg;Partridge, Julian
    • 마이크로전자및패키징학회지
    • /
    • 제8권2호
    • /
    • pp.37-42
    • /
    • 2001
  • The BGA package has been the area array package of choice for several years. Recently, the transition has been to finer pitch configurations called Chip Scale Packages (CSP). Several of these package types are available at 0.5 mm pitch. requiring surface mount assemblers to evaluate and optimize various elements of the assembly process. This presentation describes the issues associated with making the transition from BGA to CSP assembly. Areas addressed will include the accuracy of pick and place equipment, printed wiring board lines and spaces, PWB vias, in-circuit test issues, solder paste printing, moisture related factors, rework and reliability. The transition to 0.5 mm pitch requires careful evaluation of the board design, solder paste selection, stencil design and component placement accuracy. At this pitch, ball and board pad diameters can be as small as 0.25 mm and 0.20 mm respectively. Drilled interstitial vias are no longer possible and higher ball count packages require micro-via board technology. The transition to CSP requires careful evaluation of these issues. Normal paste registration and BGA component tolerances can no longer achieve the required process levels and higher accuracy pick and place machines need to be implemented. This presentation will examine the optimization of these critical assembly operations, contrast the challenges at 0.5 mm and also look at the continuation of the process to incorporate smaller pitch flip chip devices.

  • PDF