• Title/Summary/Keyword: Component Modeling Tool

Search Result 97, Processing Time 0.023 seconds

Rectangular can backward extrusion analysis using FEM (FEM을 이용한 RECTANGULAR CAN 후방압출 해석)

  • 이상승;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.699-702
    • /
    • 2001
  • The increasing demand in industry to produce rectangular cans at the reduction by the rectangular backward extrusion process involves better understanding of this process. In 2-D die deflection and dimensional variation of the component during extrusion, punch retraction, component injection and cooling was conducted using a coupled thermal-mechanical approach for the forward extrusion of aluminum alloy and low-carbon steel in tools of steel. Backward extrusion FE simulation and experimental simulation by physical modeling using wax as a model material have been performed. These simulations gave good results concerning the prediction of th flow modes and the corresponding surface expansions of the material occuring at the contact surface between the can and the punch. There prediction are the limits of the can height, depending on the reduction, the punch geometry, the workpiece material and the friction factor, in order to avoid the risk of damage caused by sticking of the workpiece material to the punch face. The influence of these different parameter on the distribution of the surface expansion along the inner can wall and bottom is already determined. This paper deals with the influence of the geometry changes of the forming tool and the work material in the rectangular backward using the 3-D finite element method.

  • PDF

FROM THE DIRECT NUMERICAL SIMULATION TO SYSTEM CODES - PERSPECTIVE FOR THE MULTI-SCALE ANALYSIS OF LWR THERMALHYDRAULICS

  • Bestion, D.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.608-619
    • /
    • 2010
  • A multi-scale analysis of water-cooled reactor thermalhydraulics can be used to take advantage of increased computer power and improved simulation tools, including Direct Numerical Simulation (DNS), Computational Fluid Dynamics (CFD) (in both open and porous mediums), and system thermalhydraulic codes. This paper presents a general strategy for this procedure for various thermalhydraulic scales. A short state of the art is given for each scale, and the role of the scale in the overall multi-scale analysis process is defined. System thermalhydraulic codes will remain a privileged tool for many investigations related to safety. CFD in porous medium is already being frequently used for core thermalhydraulics, either in 3D modules of system codes or in component codes. CFD in open medium allows zooming on some reactor components in specific situations, and may be coupled to the system and component scales. Various modeling approaches exist in the domain from DNS to CFD which may be used to improve the understanding of flow processes, and as a basis for developing more physically based models for macroscopic tools. A few examples are given to illustrate the multi-scale approach. Perspectives for the future are drawn from the present state of the art and directions for future research and development are given.

Development of an ADL tool set that supports the description of C2-style architecture (C2 스타일의 아키텍쳐 기술을 지원하는 ADL 지원도구의 개발)

  • Sin, Dong-Ik;No, Seong-Hwan;Choe, Jae-Gak;Jeon, Tae-Ung;Lee, Seung-Yeon
    • The KIPS Transactions:PartD
    • /
    • v.8D no.6
    • /
    • pp.645-656
    • /
    • 2001
  • Recently, component-based development (CBD) is rapidly spreading as a way of improving the reusability, productivity, and quality of software. For CBD to be effective in achieving such design objectives, the creation and integration of components must be based on a well-defined architecture that guides the correct composition and cooperation of application components. Software architecture must be described using an architecture description language (ADL) to ensure the correctness and preciseness of architecture models. In this paper, we propose the system architecture of an ADL tool set that can effectively support the use of CBD based on the domain architecture and we describe each component of the proposed system architecture. We also modify and redefine C2SADL that was developed to support the use of the description of C2 architectural style by UCI (University of California in Irvine) to facilitate the integration of separately described architecture models, and introduce the method of design and implementation of our ADL processor that partially implements the proposed ADL system architecture.

  • PDF

The Method of Developing an Interoperation System between Multi-Resolution Models using a HLA Adapter (HLA 연동 어댑터를 사용한 다중 해상도 모델 연동체계 개발)

  • Cho, Junho;Kim, Hee-Soo;Yoo, Min-Wook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.417-425
    • /
    • 2020
  • Multi-resolution modeling(MRM) is required when simulating objects in variable resolution and can be applied for interoperating systems, which simulate objects in fixed resolution. However, most interoperation middleware do not support MRM, so participating models must handle several issues to simulate MRM system. In this paper, we propose an interoperation system, which is composed of several different resolution models, based on the High Level Architecture and Run-Time Infrastructure(HLA/RTI). In the proposed architecture, each model participates to a HLA federation through MRM adapter application, which supports data resolution conversion and HLA services while communicating with the model. MRM adapter application can be implemented based on an MRM adapter, and an adapter application development tool is proposed to support developing the application. Using the tool, developers can easily implement data resolution conversion component plugged-in HLA adapter. A case study is implemented in the proposed MRM system, and shows that models of different resolution works successfully with dynamic resolution changes.

A Survey on Characteristics and Application Domains of 3D Factory Simulation Technology (3D 팩토리 시뮬레이션 기술의 특징과 응용 분야에 대한 고찰)

  • Jo, Da-Seol;Kim, Jun-Woo
    • The Journal of Information Systems
    • /
    • v.27 no.4
    • /
    • pp.35-70
    • /
    • 2018
  • Purpose Recently, 3D factory simulation technology has emeged as a powerful tool for modeling and analysis of a wide range of production systems, however, it has been not paid much attention in Korea. In this context, this paper aims to provide a comprehensive literature review on discrete event simulation softwares and introduce a promising 3D factory simulation software called FlexSim and its application domains. Design/methodology/approach In order to demonstrate worldwide popularity and technical superiority of FlexSim software, we analyzed the recent list of rankings for commercial discrete simulation softwares released by winter simulation conference and users' opinions collected from business software review site. Moreover, several main application domains are derived from a review of the previous research papers that deal with applications of FlexSim software. Findings FlexSim software recently moved up the list of major commercial simulation softwares, and technical superiorities of the software demonstrate that it is a promising tool for practical 3D factory simulation. Moreover, recent research papers suggest that FlexSim software can be used as a component of smart factory system. In this context, it is expected that FlexSim software becomes more popular in the era of industry 4.0.

A Methodology of Optimal Design for Solar Heating and Cooling System Using Simulation Tool

  • Lee, Dongkyu;Nam, Hyunmin;Lee, Byoungdoo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.540-543
    • /
    • 2015
  • Solar energy is one of the most important alternative energy sources which have been shown to meet high levels of heating and cooling demands in buildings. However, the efficiencies to satisfy these demands using solar energy significantly vary based on the characteristics of individual building. Therefore, this paper is focused on developing the methodology which can help to design optimal solar system for heating and cooling to be in cooperated within the existing buildings according to their load profiles. This research has established the Solar Heating and Cooling (SHC) system which is composed of collectors, absorption chiller, boiler and heat storage tank. Each component of SHC system is analyzed and made by means of Modelica Language and Pistache tool is verified the results. Sequential approximate optimization (SAO) and meta-models determined to 15 design parameters to optimize SHC system. Finally, total coefficient of performance (COP) of the entire SHC system is improved approximately 7.3% points compared to total COP of the base model of the SHC system.

  • PDF

A Development of Query-Answer Learning Tool based on LTSA (LTSA 기반의 질의 응답 학습 도구 개발)

  • Kim, Haeng-Kon;Kim, Jung-Soo
    • The KIPS Transactions:PartA
    • /
    • v.10A no.3
    • /
    • pp.269-278
    • /
    • 2003
  • The popularity of the web based education has come the need for variety learning methods and for business to exploit the web not only for interoperability but also standardization. This way of standardization has come to researched for environments, contents and practical uses in ISO. The IEEE has special]y established five technical classes for LTSA which provide advanced e-learning environments. Feedback functions would not be supported and specified in standardization for Query Answer on LTSA. In this paper, we describe the query and answer model which we have developed on layer three of LTSA. We develop the redefined model for transforming data flow oriented into object or component based model. We have developed the Query Answer Metadata (QAM) based on Learning Object Metadata (LOM). We design and showed thing a prototyping implementation the Query Answer Learning Tool (QALT). We have used the QALT to address the problem of efficiency of web based education. We also used it to develop the related tools with quality and productivity.

The AUV design based on component modeling and simulation

  • Kebriaee, Azadeh;Nasiri, Hamidreza
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.83-97
    • /
    • 2012
  • In the present work, design procedure and computer simulation of an AUV are documented briefly. The design procedure containing the design of propulsion system and CFD simulation of hydrodynamics behavior of the hull leads to achieve an optimum mechanical performance of AUV system. After designing, a comprehensive one dimensional model including motor, propeller, and AUV hull behavior simulates the whole dynamics of AUV system. In this design, to select the optimum AUV hull, several noses and tails are examined by CFD tools and the brushless motor is selected based on the first order model of DC electrical motor. By calculating thrust and velocity in functional point, OpenProp as a tool to select the optimum propeller is applied and the characteristics of appropriate propeller are determined. Finally, a computer program is developed to simulate the interaction between different components of AUV. The simulation leads to determine the initial acceleration, final velocity, and angular velocity of electrical motor and propeller. Results show the final AUV performance point is in the maximum efficiency regions of DC electrical motor and propeller.

Multi-Body Dynamic Modeling for a Flexible Rotor and Vibration Control using a Novel Phase Adjusting Technique (유연 회전축의 다물체 동역학 모델링 및 위상 조절법을 이용한 진동 제어)

  • Jung, Hoon-Hyung;Jo, Hyeon-Min;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.87-92
    • /
    • 2011
  • This article proposes a new technique of the dynamic model using multi-body dynamic analysis tool for a flexible main spindle rotor system with a novel phase adjusting control technique for the purpose of an active control of rotor vibration. The dynamic model is used as a plant model. Also in order to make control system, a component parameters and phase controller is composed and simulated by SIMULINK. The vibration is reduced to 50%. Therefore the ADAMS dynamic model for the flexible main spindle rotor and the phase adjusting control techniques may be effective for the suppressing the vibration and helpful for the future active control for rotor vibration.

Estimation of Flood runoff using HEC-HMS at agricultural small watershed (HEC-HMS를 이용한 농업소유역에서의 홍수량 추정)

  • Kim, Sang-Min;Park, Seung-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.281-284
    • /
    • 2002
  • Geographic Information System (GIS) has advantage of analyzing spatial distributed data and handling spatial data for hydrologic analysis. Hydrologic Engineering Center's Hydrologic Modeling System(HEC-HMS) with HEC-GeoHMS was used to analyze flood runoff at agricultural small watershed. HEC-GeoHMS, which is an ArcView GIS extension designed to process geospatial data for HEC-HMS, is a useful tool for storing, managing, analyzing, and displaying spatially distributed data. Hydroligical component including peak discharge, time to peak, direct runoff, baseflow for Balhan study watershed, which is located in Whasung city, Kyunggi province, having an area of $29.79km^2$, were calculated using the HEC-HMS model with HEC-GeoHMS.

  • PDF