• Title/Summary/Keyword: Component Based Simulation

Search Result 706, Processing Time 0.029 seconds

A Local Path Planning Algorithm considering the Mobility of UGV based on the Binary Map (무인차량의 주행성능을 고려한 장애물 격자지도 기반의 지역경로계획)

  • Lee, Young-Il;Lee, Ho-Joo;Ko, Jung-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.171-179
    • /
    • 2010
  • A fundamental technology of UGV(Unmanned Ground Vehicle) to perform a given mission with success in various environment is a path planning method which generates a safe and optimal path to the goal. In this paper, we suggest a local path-planning method of UGV based on the binary map using world model data which is gathered from terrain perception sensors. In specially, we present three core algorithms such as shortest path computation algorithm, path optimization algorithm and path smoothing algorithm those are used in the each composition module of LPP component. A simulation is conducted with M&S(Modeling & Simulation) system in order to verify the performance of each core algorithm and the performance of LPP component with scenarios.

Petri Nets Based Coordination Component for CSCW Environment

  • Huang Hong Zhong;Zhou Feng;Zu Xu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1123-1130
    • /
    • 2005
  • In view of the lack of efficient coordination of interdependent task in the collaborative design system, the mechanisms for temporal and resource coordination problems are established based on Petri Nets, respectively. Both of the mechanisms are encapsulated and implemented in the coordination component so as to increase the flexibility and acceptability of the system. We model the CSCW system based on Petri Nets for simulation, analysis and optimization. A case study on the overhead traveling crane is given to demonstrate and validate our theory.

Developing a Bridge Module to Java Component for SID Simulator (SID 시뮬레이터와 자바 컴포넌트 연동 모듈 개발)

  • Ma'ruf, Hasrul;Kwon, Jin Baek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.1635-1637
    • /
    • 2010
  • Simulation tools help creating a low cost and efficient development of embedded system. SID is an open source simulator software that consists library of components for modelling hardware and software components. A component can be written in C/C++ and Tcl/Tk. Currently, the SID simulation toolkit only provides support for C++ and Tcl/Tk. Tcl/Tk is used to write GUI-based components. However, we have observed that Tcl/Tk components cause slow simulation response because Tcl/Tk is a script language. It is not proper for developing the cutting-edge products with rich graphics. Therefore, in this paper, we suggest Java to a new language for GUI components in SID by developing a bridge module for SID to interworking with Java components.

Study on M&S PlugIn-Based Architecture(PBA) for SBA (SBA를 위한 M&S P1ugIn-Based Architecture(PBA) 구조에 대한 연구)

  • Won, Garng-Yun;Choi, Sang-Yeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.70-77
    • /
    • 2007
  • Simulation Based Acquisition(SBA) gains interest from the defense acquisition community. To accomplish SBA efficiently, M&S should be collaborately used in. This paper proposes PBA(PlugIn-Based Architecture) that is a common software development infrastructure and provides reuse mechanism with plugin components. PlugIns are reuse entity possible to plug-in-play statically and dynamically. This architecture supports stand alone simulation and HLA-compliant distributed simulation also.

Deriving vertical velocity in tornadic wind field from radar-measured data and improving tornado simulation by including vertical velocity at velocity inlet

  • Yi Zhao;Guirong Yan;Ruoqiang Feng;Zhongdong Duan;Houjun Kang
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.245-259
    • /
    • 2024
  • In a tornadic wind field, the vertical velocity component in certain regions of tornadoes can be significant, forming one of the major differences between tornadic wind fields and synoptic straight-line wind fields. To better understand the wind characteristics of tornadoes and properly estimate the action of tornadoes on civil structures, it is important to ensure that all the attributes of tornadoes are captured. Although Doppler radars have been used to measure tornadic wind fields, they can only directly provide information on quasi-horizontal velocity. Therefore, lots of numerical simulations and experimental tests in previous research ignored the vertical velocity at the boundary. However, the influence of vertical velocity in tornadic wind fields is not evaluated. To address this research gap, this study is to use an approach to derive the vertical velocity component based on the horizontal velocities extracted from the radar-measured data by mass continuity. This approach will be illustrated by using the radar-measured data of Spencer Tornado as an example. The vertical velocity component is included in the initial inflow condition in the CFD simulation to assess the influence of including vertical velocity in the initial inflow condition on the entire tornadic wind field.

A Vulnerability Analysis for Armored Fighting Vehicle based on SES/MB Framework using Importance of Component (구성 부품의 중요도를 활용한 SES/MB 프레임워크 기반 전차 취약성 분석)

  • Kim, Hun-Ki;Hwang, Hun-Gyu;Lee, Jang-Se
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.59-68
    • /
    • 2015
  • In this paper, we proposed a methodology of vulnerability analysis for armored fighting vehicle based on modeling and simulation. The SES/MB framework serves hierarchical representation of the structure for a complex systems and is easy to conduct modeling for the armored fighting vehicle which consists of various components. When the armored fighting vehicle is hit by the shots from threat, the vulnerability of the armored fighting vehicle is decreased by damaged or penetrated level of armors and components. The penetration is determined by the result of comparing a penetration energy through penetration analysis equation and defence ability of armor and components. And the defence ability is determined in accordance with type and defined property of normal component and armor component, all components have a weighted values for the degree of importance. We developed a simulation program for verification proposed methodology. Thus, the program analyzes vulnerability for armored fighting vehicle SES/MB framework using importance.

A DVR Control for Compensating Unbalanced Voltage Dips of a DFIG System using Zero Sequence Components

  • Thinh, Quach Ngoc;Ko, Ji-Han;Kim, Dong-Wan;Kim, Eel-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.62-68
    • /
    • 2013
  • The dynamic voltage restorer (DVR) is an effective protection device for wind turbine generators based on doubly-fed induction generator (DFIG) that is operated under unbalanced voltage dip conditions. The compensating voltages of the DVR depend on the voltage dips and on the influence of the zero sequence component. The zero sequence component results in high insulation costs and asymmetry in terminal voltages. This paper proposes the use of a proportional-resonant controller in stationary reference frames for controlling zero sequence components in the DVR to protect the DFIG during unbalanced voltage dips. To enhance the proposed control method, a comparison is carried out between two cases: with and without using the control of a zero sequence component. Simulation results are presented to verify the effectiveness of the proposed control method by using the Psim simulation program.

A Case Study on the Cost Effectiveness Analysis of Depot Maintenance Using Simulation Model and Experimental Design (시뮬레이션 모형과 실험설계법을 활용한 창정비 비용대 효과 분석 사례)

  • Kim, Sung-Kon;Lee, Sang-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.23-34
    • /
    • 2017
  • This paper is to study the simulation model of depot maintenance system that analyzes logistics supportability such as component availability and cost of target equipment. A depot maintenance system could repair or maintain multiple components simultaneously. The key performance indicators of this system are component availability, repair cycle time, and maintenance cost. The simulation model is based on the engine maintenance process of army aviation depot. This study combines the NOLH(Nearly Orthogonal Latin Hypercube) experimental design method, to composes 33 scenarios, with a multiple regression analysis to find out major factors that influence on key performance indicators. This study is significant in providing a cost-effectiveness analysis on depot maintenance system that is capable of maintaining multiple components at the same time.

The AUV design based on component modeling and simulation

  • Kebriaee, Azadeh;Nasiri, Hamidreza
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.83-97
    • /
    • 2012
  • In the present work, design procedure and computer simulation of an AUV are documented briefly. The design procedure containing the design of propulsion system and CFD simulation of hydrodynamics behavior of the hull leads to achieve an optimum mechanical performance of AUV system. After designing, a comprehensive one dimensional model including motor, propeller, and AUV hull behavior simulates the whole dynamics of AUV system. In this design, to select the optimum AUV hull, several noses and tails are examined by CFD tools and the brushless motor is selected based on the first order model of DC electrical motor. By calculating thrust and velocity in functional point, OpenProp as a tool to select the optimum propeller is applied and the characteristics of appropriate propeller are determined. Finally, a computer program is developed to simulate the interaction between different components of AUV. The simulation leads to determine the initial acceleration, final velocity, and angular velocity of electrical motor and propeller. Results show the final AUV performance point is in the maximum efficiency regions of DC electrical motor and propeller.

Large Eddy Simulation of turbulent flow around a bluff body inside a sudden expansion cylindrical chamber (급 확대부를 갖는 실린더 챔버 내부의 둔각물체 주위 유동에 관한 대 와동 모사)

  • 최창용;고상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.98-108
    • /
    • 2004
  • This study concerns a large eddy simulation (LES) of turbulent flow around a bluff body inside a sudden expansion cylindrical chamber, a configuration which resembles a premixed gas turbine combustor The simulation code is constructed by using the general coordinate system based on the physical contravariant velocity components. The Smagorinsky model is employed and the calculated Reynolds number is 5,000 based on the bulk velocity and the diameter of the inlet pipe. The combined grid technique and cylindrical grid are tested in the numerical simulation with complex geometry. The predicted turbulent statistics are evaluated by comparing with LDV measurement data. The numerical flow visualizations depict the behavior of turbulent mixing process behind the flame holder.