

Developing a Bridge Module to Java Component for SID Simulator1

Hasrul Ma’ruf*, Jin Baek Kwon*
*Dept. of Computer Science & Engineering, Sun Moon University

e-mail : hasrulwho@gmail.com, jbkwon@sunmoon.ac.kr

SID 시뮬레이터와 자바 컴포넌트 연동 모듈 개발

하스룰*, 권진백*
선문대학교 컴퓨터공학과

Abstract

Simulation tools help creating a low cost and efficient development of embedded system. SID is an open
source simulator software that consists library of components for modelling hardware and software components. A
component can be written in C/C++ and Tcl/Tk. Currently, the SID simulation toolkit only provides support for
C++ and Tcl/Tk. Tcl/Tk is used to write GUI-based components. However, we have observed that Tcl/Tk
components cause slow simulation response because Tcl/Tk is a script language. It is not proper for developing the
cutting-edge products with rich graphics. Therefore, in this paper, we suggest Java to a new language for GUI
components in SID by developing a bridge module for SID to interworking with Java components.

1 "This research was supported by the MKE(The Ministry of Knowledge Economy), Korea, under the ITRC(Information Technology
Research Center) support program supervised by the NIPA(National IT Industry Promotion Agency)" (NIPA-2010-C1090-1031-0004)

1. Introduction

In recent years, there has been notable growth in the
use and the application of embedded systems. However,
the improvements to the design and testing tools have not
kept pace with the rapid development of customized
hardware parts. The simulation of the target environment
enables embedded software developers to analyze and test
their software, even in the absence of the physical
hardware.

The SID simulator consists of an engine that loads and
connects simulated components, based on a configuration file,
and runs simulation sessions. Currently, SID only provided
GUI simulation of a component by providing bridge to
Tcl/Tk scripting technology.

SID also provides a built-in system monitor written in
Tcl/Tk, to monitor a running simulation. However, the
system monitor is still experimental, and it is somewhat
limited and not so user-friendly. The system monitor lists the
components in the active virtual platform, showing specific
component attributes such as pins, registers, etc. Since our
system is based on the Eclipse framework, the system
monitor should also be made to an Eclipse plug-in, which
must be written in Java. However, SID cannot support
components written in Java directly without a Java bridge
component[1]. Tcl/Tk with the system monitor also did not
give a good performance in GUI simulation[2].

In this paper, we provide an alternative by creating a Java
Bridge to SID. Hence, a GUI component for SID, e.g. LCD
panel, can be created in Java by employing Java Bridge
component along with the newly written component in Java.

2. Related Work

2.1 SID

SID is a framework for building computer system
simulations and SID is made for debugging, testing, and
verifying embedded software[3]. Specifically, a simulation is
comprised of a collection of loosely coupled components.
Simulated may range from a CPU’s instruction to a large
multi-processor embedded systems. SID has the following
features:
– Open source framework for building computer system

simulations/
– A growing library of components for modeling hardware

and software parts, instrumentation, control, and external
interfaces.

– Support GDB debugger
– Virtual Target Platform
– Embedded System software testing & verification.

SID defines a small component interface which serves to

tightly encapsulate them. Components may be written in C++,
C, Tcl or any other language to which the API is bound.
However, the SID simulation toolkit only provides support
for C++ and Tcl/Tk. The SID is based on C++, therefore C++
is the main language, and for additional language a special
component, a bridge, is required. Currently only Tcl/Tk
bridge is available.

Typically, components are separately compiled and
packaged into shared libraries. A standard run-time

- 1635 -

제34회 한국정보처리학회 추계학술대회 논문집 제17권 2호 (2010. 11)

linking/loading interface is defined for these components.
The package includes a growing library of components for
modeling hardware and software parts, instrumentation,
control, and external interfaces. During simulation start-up,
components are instantiated, interconnected, and configured
as necessary to represent some specific system. All these
configurations are written in one configuration file, and
required before SID runtime, see Fig. 1.

Fig. 1: Current SID Simulator Architecture

2.2 C++ to Java communication

A number of alternative approaches also allow Java
applications to interoperate with code written in other
language such as C++. Java Native Interface (JNI)[4] is a
programming framework that allows Java code running in a
Java Virtual Machine (JVM) to call and to be
calledhttp://en.wikipedia.org/wiki/Java_Native_Interface -
cite_note-role-0 by native applications (programs specific to
a hardware and operating system platform) and libraries
written in other languages, such as C, C++ and assembly.
Unfortunately, JNI resides C++ and Java in the same
process[4]. Therefore, JNI will create a highly coupled C++
and Java code.

Other than JNI, a Java application may connect to a legacy
database through the JDBCTM API[4]. Java application also
may take advantage of distributed object technologies such
as the Java IDL API. The other alternative is a
communication via a TCP/IP connection or through other
inter-process communication (IPC) mechanisms.

3. Java Bridge

To get supportability with other parts of SID architecture,
the design of Java Bridge has to be based on the current
architecture of SID. In addition, the bridge also has to
support the flexibility of various components that will be
created on Java, see Fig. 2. Through these basis and
experiments, we conclude that Java Bridge has to comply
with these requirements:
– Enabling C++ to Java communication
– The SID bridge code in C++ part has to be able to run as

a C++ shared library. Since the bridge will be called from
SID simulation engine as a SID component.

– SID Bridge code has to be able to run Java, and to do
procedure call to Java (also get return from the call).

– Java Bridge has to keep a state of objects so that SID can
reuse them in the next calls.

Fig. 2: Overview of SID – Java Bridge Architecture

In our experiment, JNI is unable to be used in C++ shared

library, only a single executable C++ code can run JNI. There
is no need of database or complex object structure in SID.
Therefore, for simplicity, we chose a TCP/IP connection as
method of communication between C++ and Java in SID-
Java Bridge.

Asynchronous communications, which is a form of
input/output processing that permits other call to continue
before one call has finished, was also considered as a
requirement in the bridge. There is a chance that another call
happen before the previous call finished or giving return in
SID simulation scenario.

We put a client-server architecture on both bridges to
support with this asynchronous requirement. Specifically, we
created a single TCP server that can handle multiple requests
(procedure calls) and created multiple handlers for each
request. As shown in Fig. 3, considering a call as a client in
the server, the server will create a single handler for each call,
and therefore let the handler (thread) to take care of
individual call afterwards.

Fig. 3: Client-Server Architecture

Though XML might create some trade off of performance,
for the reason of readability and also portability, XML is
used as the message format in this bridge. The other reason is
XML processors are already available for Java and C++.
Therefore, the usage will reduce the error possibility in
message processing.

Below, see Fig. 4, is a complete class diagram of Java
Brige. To keep the objects, that previously created or
modified in Java, we used a hash table that maintains
pointers to objects in Java. Hash table uses “key” to enable
the remote program to access these objects again another
time.

The main code is the JavaBridge class. Basically, it has a
thread pool and a receiver thread. A thread pool contains a
number of hThread (HandlerThread instances), and always
preserve a minimum number of them to prevent a big thread

- 1636 -

제34회 한국정보처리학회 추계학술대회 논문집 제17권 2호 (2010. 11)

"This research was supported by the MKE(The Ministry of Knowledge Economy), Korea, under the ITRC(Information Technology

Research Center) Support program supervised by the NIPA(National IT industry Promotion Agency)" (NIPA-2009-C1090-0902-

0020)

spinoff, which can lead to inefficient memory and CPU
usage. HandlerThread itself is a template to create a thread
that can serve a call (CALLEE) as well as doing a call
(CALLER). The Caller and XMLUtil are classes that used
when Java is going to do a remote call to SID.
SIDJComponent is an abstract class that represents every
SID component in Java, therefore it will be extended as a
super class for every SID Component in Java. Respectively,
the C++ SID Bridge looks almost exactly the same as the
Java, with the restriction of different set of libraries to build
the bridge in C++.

+HandlerThread(in pool, in objHash)
+run()
+assignTask(in cliConn : Socket)
+assignTask(in cObj, in cProp, in msg, in sidportnum)
+sendMsg()
+recvMsg()

+cliConn : Socket
-jcomp : SIDJComponent
-gHash : Hashtable
-isWorking : bool
-pool : ThreadPool
-CALLER : int
-CALLEE : int

HandlerThread

JAVA

+SIDJComponent()
+~SIDJComponent()
+pin_names()
+find_pin()
+connect_pin()
+disconnect_pin()
+connected_pins()
+newpin()
+accessor_names()
+connect_accessor()
+disconnect_accessor()
+bus_names()
+find_bus()
+connected_bus()
+newbus()
+attributes_names()
+attribute_value()
+set_attribute_value()
+relationships_names()
+relate()
+unrelate()
+related_components()

-callerThread : HandlerThread

SIDJComponent

SIDJComp1

+main()
+callRemote()

-objHash : HashTable
-nMinThread : int
-pool : ThreadPool
-sidportnum : int
-javaportnum : int
-receiver : ReceiverThread
-caller : Caller

JavaBridge

+Caller(in pool : ThreadPool, in sidportnum : int)
+assignWork(in cObj : Object, in cProp : String, in msg : String)

-pool : ThreadPool
-sidportnum : int
-hdlThread : HandlerThread

Caller

+ReceiverThread(in pool, in javaportnum)
+run()

-pool : ThreadPool
-javaportnum : int
-serverSocket : ServerSocket
-cliConn : Socket
-hdlThread : HandlerThread

ReceiverThread

cliConn : Socket
jcomp : SIDJComponent
gHash : Hashtable
isWorking : bool
pool : ThreadPool

hThread : HandlerThread

+ThreadPool()
+ThreadPool(in initSize : int)
+addWorker()
+getIdleWorker() : HandlerThread

-MAXSIZE : int
-_pool : Vector

ThreadPool

-End11

-End2*nmin..

+processInput()
+demarshall()
+runCall()

XMLUtil

-classpath : String
-classname : String
-instancename : String
-params : List

Call

-type : String
-values : List

Param1 1..n

Fig. 4: Java Bridge Class Diagram

4. Experiments

SID is known to run on Linux, Solaris, and Cygwin hosts.
Currently, we just tested SID – Java Bridge in Ubuntu to run
a LCD Panel. The scenario is to send continuous pixel data
(motion images) from SID to Java LCD component. In
Ubuntu 8 (Hardy) with Intel Quad CPU @2.33 GHz and
RAM 2 GB, the maximum communication rate for QCIF raw
bitmap format is 20 fps.

Fig. 5: SID – Java Bridge Example Application

5. Conclusion

In this paper we propose a Java Bridge as an alternative to
the current Tcl/Tk Bridge. It is designated to be more flexible
GUI components with also a better GUI performance than
Tcl/Tk components.

References

[1] Hadipurnawan Satria, Baatarbileg Altangerel, Jin Baek Kwon,

Jeongbae Lee, "Configurable Virtual Platform Environment
using SID Simulator and Eclipse," In Proc. of Software
Technologies for Embedded and Ubiquitous Systems, SEUS
2007, pp.394-398.

[2] Febiansyah Hidayat, Hadipurnawan Satria, Jin B. Kwon.
“Verifying a Virtual Development Environment for Embedded
Software”. Korea Information Processing Society (KIPS) Fall
Conference 2010. Seoul, South Korea

[3] SID. http://sourceware.org/sid/
[4] The Java Native Interface Programmer's Guide and

Specification, Sun Microsystems, chap. 1.

- 1637 -

제34회 한국정보처리학회 추계학술대회 논문집 제17권 2호 (2010. 11)

