• Title/Summary/Keyword: Component Architecture

Search Result 876, Processing Time 0.035 seconds

Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.641-651
    • /
    • 2019
  • The stochastic stability control of the parameter-excited vibration of an inclined stay cable with multiple modes coupling under random and periodic combined support disturbances is studied by using the direct eigenvalue analysis approach based on the response moment stability, Floquet theorem, Fourier series and matrix eigenvalue analysis. The differential equation with time-varying parameters for the transverse vibration of the inclined cable with control under random and deterministic support disturbances is derived and converted into the randomly and deterministically parameter-excited multi-degree-of-freedom vibration equations. As the stochastic stability of the parameter-excited vibration is mainly determined by the characteristics of perturbation moment, the differential equation with only deterministic parameters for the perturbation second moment is derived based on the $It{\hat{o}}$ stochastic differential rule. The stochastically and deterministically parameter-excited vibration stability is then determined by the deterministic parameter-varying response moment stability. Based on the Floquet theorem, expanding the periodic parameters of the perturbation moment equation and the periodic component of the characteristic perturbation moment expression into the Fourier series yields the eigenvalue equation which determines the perturbation moment behavior. Thus the stochastic stability of the parameter-excited cable vibration under the random and periodic combined support disturbances is determined directly by the matrix eigenvalues. The direct eigenvalue analysis approach is applicable to the stochastic stability of the control cable with multiple modes coupling under various periodic and/or random support disturbances. Numerical results illustrate that the multiple cable modes need to be considered for the stochastic stability of the parameter-excited cable vibration under the random and periodic support disturbances, and the increase of the control damping rather than control stiffness can greatly enhance the stochastic stability of the parameter-excited cable vibration including the frequency width increase of the periodic disturbance and the critical value increase of the random disturbance amplitude.

Experimental evaluation of an inertial mass damper and its analytical model for cable vibration mitigation

  • Lu, Lei;Fermandois, Gaston A.;Lu, Xilin;Spencer, Billie F. Jr.;Duan, Yuan-Feng;Zhou, Ying
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.589-613
    • /
    • 2019
  • Cables are prone to vibration due to their low inherent damping characteristics. Recently, negative stiffness dampers have gained attentions, because of their promising energy dissipation ability. The viscous inertial mass damper (termed as VIMD hereinafter) can be viewed as one realization of the inerter. It is formed by paralleling an inertial mass part with a common energy dissipation element (e.g., viscous element) and able to provide pseudo-negative stiffness properties to flexible systems such as cables. A previous study examined the potential of IMD to enhance the damping of stay cables. Because there are already models for common energy dissipation elements, the key to establish a general model for IMD is to propose an analytical model of the rotary mass component. In this paper, the characteristics of the rotary mass and the proposed analytical model have been evaluated by the numerical and experimental tests. First, a series of harmonic tests are conducted to show the performance and properties of the IMD only having the rotary mass. Then, the mechanism of nonlinearities is analyzed, and an analytical model is introduced and validated by comparing with the experimental data. Finally, a real-time hybrid simulation test is conducted with a physical IMD specimen and cable numerical substructure under distributed sinusoidal excitation. The results show that the chosen model of the rotary mass part can provide better estimation on the damper's performance, and it is better to use it to form a general analytical model of IMD. On the other hand, the simplified damper model is accurate for the preliminary simulation of the cable responses.

HIL based LNGC PMS Simulator's Performance Verification (HIL 기반 LNGC PMS 시뮬레이터의 성능 검증)

  • Lee, Kwangkook;Park, Jaemun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.219-220
    • /
    • 2016
  • A power management system (PMS) has been an important part in a ship integrated control system. To evaluate a PMS for a liquefied natural gas carrier (LNGC), this research proposes a real-time hardware-in-the-loop simulation (HILS), which is composed of major component models such as turbine generator, diesel generator, governor, circuit breaker, and 3-phase loads on MATLAB/Simulink. In addition, FPGA based control console and main switchboard (MSBD) are constructed in order to develop an efficient control and a similar real environment in an LNGC PMS. A comparative study on the performance evaluation of PMS functions is conducted using two test cases for sharing electric power to consumers in an LNGC. The result shows that the proposed system has a high verification capability for the operating function and failure insertion evaluation as a PMS simulator.

  • PDF

Systems Engineering Approach to develop the FPGA based Cyber Security Equipment for Nuclear Power Plant

  • Kim, Jun Sung;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.73-82
    • /
    • 2018
  • In this work, a hardware based cryptographic module for the cyber security of nuclear power plant is developed using a system engineering approach. Nuclear power plants are isolated from the Internet, but as shown in the case of Iran, Man-in-the-middle attacks (MITM) could be a threat to the safety of the nuclear facilities. This FPGA-based module does not have an operating system and it provides protection as a firewall and mitigates the cyber threats. The encryption equipment consists of an encryption module, a decryption module, and interfaces for communication between modules and systems. The Advanced Encryption Standard (AES)-128, which is formally approved as top level by U.S. National Security Agency for cryptographic algorithms, is adopted. The development of the cyber security module is implemented in two main phases: reverse engineering and re-engineering. In the reverse engineering phase, the cyber security plan and system requirements are analyzed, and the AES algorithm is decomposed into functional units. In the re-engineering phase, we model the logical architecture using Vitech CORE9 software and simulate it with the Enhanced Functional Flow Block Diagram (EFFBD), which confirms the performance improvements of the hardware-based cryptographic module as compared to software based cryptography. Following this, the Hardware description language (HDL) code is developed and tested to verify the integrity of the code. Then, the developed code is implemented on the FPGA and connected to the personal computer through Recommended Standard (RS)-232 communication to perform validation of the developed component. For the future work, the developed FPGA based encryption equipment will be verified and validated in its expected operating environment by connecting it to the Advanced power reactor (APR)-1400 simulator.

A Study for Ameliorating Design Guidelines to Vitalize Privately Owned Public Space(POPS) (공개공지 조성지침 시대별 특징 및 개선방안 연구)

  • Kim, Do-yeon;Choi, Yun-kyung
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.3
    • /
    • pp.105-116
    • /
    • 2018
  • POPS(Privately Owned Public Spaces) is one of the major component that vitalize the city by private sectors providing open-spaces to the public. It holds great significances and possibilities within CBD(Central Business District) which lack open-space and green-space. Despite of its importance, a large number of problems such as deficient accessibility for the public and being unpractical from constructing only with formality occur in existing POPS. POPS should be for both owners and public because it is a public space located within a private estate. To vitalize POPS, functions like "diversity", "accessibility and connectivity", and "usability" are essential. Providing diverse types of spaces makes dynamic city, and the spaces must have easy access by public and variety of functions. Managements by diverse types of POPS are necessary to improve availability and to provides suitable spaces. To make diverse types of POPS, advanced classifications of type and clear criteria are required. From aspect of accessibility and connectivity, firstly detailed instructions for the arrangement are necessary for reinforcement. Specific research on means of connection such as how many faces of POPS should adjoin streets and in which direction it should be facing should be applied. Purposes of POPS must be specified depending on the type of POPS. By connecting adjacent buildings with POPS, one of the main principal of vitalizing POPS, inflow of people can be increased. Accordingly, improvements of design guidelines in "diversity", "accessibility and connectivity", and "usability" can be suggested to vitalize POPS. With these concerns in mind, this paper analyzes problems of current Seoul POPS guidelines with three aspects.

A Study on the Housing as Medium between the Self-establishment and the Selection - Focused on Narrative Structure of 'Online-housewarming' - (선택행위를 통한 자아확립의 매개로서 현대주거에 관한 연구 - '온라인집들이'의 서사구조 분석을 중심으로 -)

  • Hur, Eun-Seok;Zo, Hangman
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.5
    • /
    • pp.41-50
    • /
    • 2019
  • In this study, we analyzed the process of the housing reflecting the self, based on the qualitative data that people describe their thoughts about their housing in social media 'online-housewarming'. Especially, based on the precedent study that modern self is established on continuous selection behavior, we focused on the selection behavior of the self and the role of the housing that affected it through the narrative. Each narrative component corresponds to the self-establishment process of modern people, identified through precedent study. We can confirm the existing internal criteria changing into new internal criteria through accumulation, interaction and nonverbal communication of selection by housing. Housing has been involved in the selection behavior of self throughout the narrative. From this, it can be seen that the thought of the self and housing are identified in three ways. In 'Online-Housewarming', (1) Housing equates with the self, in the sense that housing is a physical entity in which one's own choices are accumulated (2) People perceive the change of choice caused by the realistic constraints of housing as their interaction with housing. (3) People relate the opinions of others about housing with the opinions about their own self. In contemporary society, house reforming process is a process of mediating the self and the external world based on the selection behavior and affects the establishment of self.

Plug-and-Play Framework for Connectivity Control and Self-Reconfiguration of Weapon System Components (무기체계 구성장치의 연결성 제어 및 자율 재구성을 위한 플러그앤플레이 프레임워크)

  • Chang, HyeMin;Kang, SukJong;Cho, YoungGeol;Yoon, JooHong;Yun, Jihyeok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.328-338
    • /
    • 2021
  • A study on common modular design based on open standards to reduce the life cycle cost of ground weapon system is underway. Since the ground weapon system includes major mission equipment such as fire control system, it is essential to apply the concept of fault tolerance through automatic reconfiguration and blocking unspecified equipment through connectivity control. However, it is difficult to generalize due to the difference in operating characteristics for each system. In this paper, we propose a plug-and-play framework, which includes plug-and-play architecture and mechanism. The proposed method can be used in common by the application of each component as it is divided into a common service layer. In addition, the proposed connectivity control and autonomous reconfiguration method facilitates reflection of operating characteristics for each system. We constructed a verification environment that can simulate ground weapon systems and components, and verified that the proposed framework works through scenario-based functional tests.

The Complementary Study for Operational Concept Document(OCD) and Operational Requirements Document(ORD) using MND-AF (MND-AF를 활용한 운용개념기술서(OCD) 및 운용요구서(ORD)에 대한 보완 연구)

  • Cha, Seung Hun;Jang, Jae Duck;Lee, Hye Jin;Choi, Sang Wook;Yoo, Jae Sang
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.118-130
    • /
    • 2020
  • Modern weapon systems are composed of complex systems(System of Systems) and require a complex and advanced operational concept that performs missions through interoperability with various weapon systems. In order to derive the operational concept of the weapon system that the military wants to acquire (i.e., single mission, component operation, Joint and Alliance operations), it is necessary to identify the system related to the weapon system, environmental factors and restrictions of the weapon system to be developed. Through the derivation of the operational concept, the weapon system acquisition agency can reasonably and accurately extract various and complex requirements. In this paper, we propose a complementary method of using MND-AF to OCD and ORD required in weapon system acquisition process. MND-AF can increase the understanding and consensus of business stakeholders (users, acquirers, developers, etc.) by showing the results of weapon system analysis from various perspectives. We compare the items in the standard form of OCD and ORD with the MND-AF outputs.

Gate length scaling behavior and improved frequency characteristics of In0.8Ga0.2As high-electron-mobility transistor, a core device for sensor and communication applications (센서 및 통신 응용 핵심 소재 In0.8Ga0.2As HEMT 소자의 게이트 길이 스케일링 및 주파수 특성 개선 연구)

  • Jo, Hyeon-Bhin;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.436-440
    • /
    • 2021
  • The impact of the gate length (Lg) on the DC and high-frequency characteristics of indium-rich In0.8Ga0.2As channel high-electron mobility transistors (HEMTs) on a 3-inch InP substrate was inverstigated. HEMTs with a source-to-drain spacing (LSD) of 0.8 ㎛ with different values of Lg ranging from 1 ㎛ to 19 nm were fabricated, and their DC and RF responses were measured and analyzed in detail. In addition, a T-shaped gate with a gate stem height as high as 200 nm was utilized to minimize the parasitic gate capacitance during device fabrication. The threshold voltage (VT) roll-off behavior against Lg was observed clearly, and the maximum transconductance (gm_max) improved as Lg scaled down to 19 nm. In particular, the device with an Lg of 19 nm with an LSD of 0.8 mm exhibited an excellent combination of DC and RF characteristics, such as a gm_max of 2.5 mS/㎛, On resistance (RON) of 261 Ω·㎛, current-gain cutoff frequency (fT) of 738 GHz, and maximum oscillation frequency (fmax) of 492 GHz. The results indicate that the reduction of Lg to 19 nm improves the DC and RF characteristics of InGaAs HEMTs, and a possible increase in the parasitic capacitance component, associated with T-shap, remains negligible in the device architecture.

Fast Adaptation Techniques of Compensation Coefficient of Active Noise Canceller using Binary Search Algorithm (이진 탐색 알고리즘을 이용한 능동 노이즈 제거용 보정 계수 고속 적용 기법)

  • An, Joonghyun;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1635-1641
    • /
    • 2021
  • Portable systems with built-in active noise control is required low power operation. Excessive anti noise search operation can lead to rapid battery consumption. A method that can adaptively cancel noise according to the operating conditions of the system is required and the methods of reducing power are becoming very important key feature in today's portable systems. In this paper, we propose the method of active noise control(ANC) using binary search algorithm in noisy systems. The implemented architecture detects a frequency component considered as noise from the input signal and by using the binary search algorithm, the system find out an appropriate amplitude value for anti-noise in a much faster time than the general linear search algorithm. Through the experimental results, it was confirmed that the proposed algorithm performs a successful functional operation.