• Title/Summary/Keyword: Compliant mechanism

Search Result 81, Processing Time 0.026 seconds

Strength and Stiffness Analysis for a Flexible Gripper with Parallel Pinching and Compliant Grasping Capabilities (순응형 파지와 정밀한 집기가 가능한 유연한 그리퍼의 강도 및 강성 분석)

  • Lee, Deok Won;Jeon, Hyeong Seok;Jeong, Young Jun;Kim, Yong Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.817-825
    • /
    • 2016
  • In this paper, we introduce a flexible gripper that we have engineered to precisely pinch in parallel and compliantly grasp objects. As found in most conventional industrial grippers, the parallel pinching property is essential for precise manipulation. On the other hand, the grippers with a flexible structure are more adept at grasping objects with arbitrary shapes and softness. To achieve these disparate properties, we introduce a flexible gripper mechanism composed of multiple flexible beam structures. Utilizing these beam structures, the proposed gripper is able to grasp arbitrarily shaped objects. Additionally, a unique combination of flexible beams enables the gripper to pinch objects using the parallel fingertips for enhanced precision. A detailed description of the proposed mechanism is provided, and an analysis of the strength and stiffness of the fingertip and finger body is presented. The Results section compares the theoretical and experimental analyses and verifies the properties and performance of the proposed gripper.

Improvement of Dynamic Characteristics of OIS System using Improved Band Notch and Analysis of Images (노치 대역을 개선한 이미지 흔들림 보정 장치의 동특성 향상과 이미지 분석)

  • Son, Dong-Hun;Park, No-Cheol;Park, Young-Pil;Park, Kyoung-Su
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.2
    • /
    • pp.70-74
    • /
    • 2011
  • The mobile camera module is a device to be inserted in the digital device for camera feature. The mobile camera module is being shaken by vibrations such as handshake during the exposure time. The clarity is compromised by these vibrations, thus the vibration is considered as an external disturbance. Moreover the use of mobile camera module has been being expanded for automotive vibration should be considered. These external disturbances can cause image blurring, thus optical image stabilization should be applied for image compensation. The compensator is fulfilled mechanically by movable lens group or image sensor that adjusts the optical path to the camera movement. Open loop control is useful for well-defined systems like compliant mechanism. Notch filter and lead compensator are designed and applied to improve the stability and bandwidth. The final level of image compensating is confirmed by image processing with MATLAB and CODE V to verify the better performance.

Shock Absorbing Safe Mechanism Based on Transmission Angle of a 4-bar Linkage (4절링크의 전달각에 기초한 충격흡수식 안전 메커니즘)

  • 박정준;김병상;송재복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.180-185
    • /
    • 2004
  • Unlike industrial manipulators, the manipulators mounted on the service robots are interacting with humans in various aspects. Therefore, safety has been the important design issue. Many compliant robot arm designs have been introduced for safety. It is known that passive compliance method has faster response and higher reliability than active ones. In this paper, a new safe mechanism based on passive compliance has been proposed. Passive mechanical elements, specifically transmission angle of the 4-bar linkage, springs and shock absorbing modules are incorporated into this safe mechanism. This mechanism works only when the robot arm exerts contact force much more than the human pain tolerance. Validity of the safe mechanism is verified by simulations and experiments. In this research, it is shown that the manipulator using this mechanism provides higher performance and safety than those using other passive compliance mechanisms.

  • PDF

Variable camber morphing wing mechanism using deployable scissor structure: Design, analysis and manufacturing

  • Choi, Yeeryung;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.2
    • /
    • pp.103-117
    • /
    • 2022
  • In this paper, a novel morphing mechanism using a deployable scissor structure was proposed for a variable camber morphing wing. The mechanism was designed through the optimization process so that the rib can form the target airfoils with different cambers. Lastly, the morphing wing was manufactured and its performance was successfully evaluated. The mechanism of the morphing wing rib was realized by a set of deployable scissor structure that can form diverse curvatures. This characteristic of the structure allows the mechanism to vary the camber that refers to the airfoil's curvature. The mechanism is not restrictive in defining the target shapes, allowing various airfoils and overall morphing wing shape to be implemented.

Compliant Stage for Nano Patterning Machine (나노 패턴 장비용 컴플라이언스 스테이지)

  • Choi, Kee-Bong;Lee, Jae-Jong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1065-1068
    • /
    • 2003
  • The nano imprint process is one of the next generation lithography has been mentioned as one of major nanoreplication techniques because it is simple process, low cost, high replication fidelity and relatively high throughput. This process requires a surface contact between a template with patterns and a wafer on a stage. After contact, the vertical moving the template to the wafer causes some directional motions of the stage. Thus the stage must move according to the motions of the template to avoid the damage of the transferred patterns on the wafer. This study is to develop the wafer stage with a passive compliance to overcome the damage. This stage is designed with the concept like that it has a monolithic, symmetry and planar 6-DOF mechanism.

  • PDF

A Compliant Contact Control Strategy for Robot Manipulators with Unknown Environment

  • Kim, Byoung-Ho;Chong, Nak-Young;Oh, Sang-Rok;Suh, Il-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.20-25
    • /
    • 1998
  • This paper proposes a new compliant contact control strategy for the robot manipulators accidentally interacting with an unknown environment. The main features of the proposed method are summarized as follows: First, each entry in the diagonal stiffness matrix corresponding to the task coordinate in Cartesian space is adaptively adjusted during con-tact along the corresponding axis based on the contact force with its environment. Second, it can be used for both unconstrained and constrained motions without any switching mechanism which often causes undesirable instability and/or vibrational motion of the end effector. Third, the adjusted stiffness gains are automatically recovered to initially specified stiffness gains when the task is changed from constrained motion to unconstrained motion. The simulation results show the effectiveness of the proposed method by employing a two-link direct drive manipulator interacting with an unknown environment.

  • PDF

A Perching Mechanism of a Quadrotor for Energy Harvesting (에너지 하베스팅을 위한 쿼드로터의 퍼칭 메커니즘 연구)

  • Choi, Hong-Cheol;Shin, Nae-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.198-204
    • /
    • 2018
  • Quadrotor with limited flight time due to battery level can have the extended mission life by applying energy harvesting technology. Bio-inspiration from the birds' locomotion of flight and perch-and-stare can make energy consumption efficient, and energy harvesting technology can generate energy. In order to charge the battery with solar power, the drones are required to be in a position without shade. In the mountainous terrain, a novel mechanism is required in order to be located stably at the top of the tree or the inclined rock. In this study, we propose an analysis of the origami structure and the concept design of the perching mechanism with two stable equilibrium states. The origami structure composed of compliant material can be applied to the perching mechanism that can be locked passively. Moreover, the experimental results of the trajectory and perching test are discussed.

Design and Manufacturing of Robotic Dolphin with Variable Stiffness Mechanism (가변강성 메커니즘을 적용한 로봇 돌고래 설계 및 제작)

  • Park, Yong-Jai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.103-110
    • /
    • 2020
  • Bio-inspired underwater robots have been studied to improve the dynamic performance of fins, such as swimming speed and efficiency, which is the most basic performance. Among them, bio-inspired soft robots with a compliant tail fin can have high degrees of freedom. On the other hand, to improve the driving efficiency of the compliant fins, the stiffness of the tail fin should be changed with the driving frequency. Therefore, a new type of variable stiffness mechanism has been developed and verified. This study, which was inspired by the anatomy of a real dolphin, assessed a process of designing and manufacturing a robotic dolphin with a variable stiffness mechanism. By mimicking the vertebrae of a dolphin, the variable stiffness driving part was manufactured using subtractive and additive manufacturing. A driving tendon was placed considering the location of the tendon in the actual dolphin, and the additional tendon was installed to change its stiffness. A robotic dolphin was designed and manufactured in a streamlined shape, and the swimming speed was measured by varying the stiffness. When the stiffness of the tail fin was varied at the same driving frequency, the swimming speed and thrust changed by approximately 1.24 and 1.5 times, respectively.

Modeling and Analysis of Robotic Foot Mechanism Based on Truss Structure (트러스 구조를 기반으로 한 로봇 발 메커니즘 모델링 및 특성 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.347-352
    • /
    • 2012
  • This paper presents a robotic foot mechanism based on truss structure for walking robots and analyzes its effectiveness for compliant walking. The specified foot mechanism has been modeled by observing the structure and behavior of human foot. The frame of bone used in the human foot is considered as a truss, and the ligaments of the human foot are represented as a simple stiffness element. So such a robotic foot has an advantage to moderate the impact of foot when a walking robot takes a step. As a result, it is practically expected that the proposed robotic foot mechanism can contribute to reduce the physical fatigue of walking robots.