• 제목/요약/키워드: Compliant Joint

검색결과 37건 처리시간 0.033초

연소충격 격리용 완화부품 설계 (Design of Compliant Joint for Pyro-shock Isolation)

  • 한혁섭;임대현;김진용;이영원;박성한
    • 한국추진공학회지
    • /
    • 제20권1호
    • /
    • pp.8-13
    • /
    • 2016
  • 연소충격완화부품은 폴리우레탄과 같은 완화소재를 사용하여 진동을 격리함으로써 추진기관이나 화공품 연소로 발생한 충격에 의해 로켓의 전자장비가 작동하지 않는 것을 방지하기 위해 사용한다. 연소충격완화부품의 성능은 굽힘 고유진동수와 전달률을 측정하여 판단할 수 있다. 본 연구를 통해 동일한 추진기관의 해외 연구결과를 통한 기준 모델의 실험 결과를 바탕으로 굽힘 고유진동수와 전달률에 대한 설계요구조건을 수립하였으며, 충분한 충격완화특성을 가지는 완화소재를 개발하여 새로운 로켓에 적합한 연소충격완화부품을 개발하였다. 본 연구는 완화소재 및 성능 측정 방법을 이용하여 연소충격완화부품을 개발하기 위해 사용할 수 있다.

평판 구조물의 진동 파워흐름해석을 위한 비보존 조인트 개발 (Development of Compliant and Dissipative Joints in Coupled Thin Plates for Vibrational Energy Flow Analysis)

  • 송지훈;홍석윤
    • 한국소음진동공학회논문집
    • /
    • 제18권10호
    • /
    • pp.1082-1090
    • /
    • 2008
  • In this paper, a general solution for the vibrational energy and intensity distribution through a compliant and dissipative joint between plate structures is derived on the basis of energy flow analysis (EFA). The joints are modeled by four sets of springs and dashpots to show their compliancy and dissipation in all four degrees of freedom. First, for the EFA, the power transmission and reflection coefficients for the joint on coupled plate structures connected at arbitrary angles were derived by the wave transmission approach. In numerical applications, EFA is performed using the derived coefficients for coupled plate structures under various joint properties, excitation frequencies, coupling angles, and internal loss factors. Numerical results of the vibrational energy distribution showed that the developed compliant and dissipative joint model successfully predicted the joint characteristics of practical structures vibrating in the medium-to-high frequency ranges. Moreover, the intensity distribution of a compliant and dissipative joint is described.

순응성 발목 관절을 갖는 두발 로보트의 보행 (Walking of a biped robot with compliant ankle joints)

  • 이건영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1157-1160
    • /
    • 1996
  • Control of a biped robot which has compliant ankle joints is dealt in this paper. Simulated version of a human ankle joint is built using springs and mechanical constraints, which gives a flexibility of joint and compliance against the touching ground. The biped robot with compliant ankle joints proposed here gives a good contact between its sole and the ground and makes foot landing soft. As a result, installing force sensors for measuring the center of gravity of the biped becomes easier. A motor to drive an ankle joint is not needed which makes legs light. However, the control problem becomes more difficult because the torque of the ankle joint to put the biped in a desired walking gait cannot be provided from the compliant ankle joint. To solve this problem, we proposed a dynamic gait modification method by adjusting the position of a hip joint. Simulation results for the mathematical model of the SD-2 biped in the Ohio State University are given to show the validity of the proposed controller.

  • PDF

물고기 로봇 개발을 위한 유연한 꼬리 지느러미 관절의 강성에 따른 최대 추력 조건 연구 (Maximum Thrust Condition by Compliant Joint of a Caudal Fin for Developing a Robotic Fish)

  • 박용재;정우석;이정수;권석령;김호영;조규진
    • 제어로봇시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.103-109
    • /
    • 2012
  • Fish generates large thrust through an oscillating motion with a compliant joint of caudal fin. The compliance of caudal fin affects the thrust generated by the fish. Due to the flexibility of the fish, the fish can generate a travelling wave motion which is known to increase the efficiency of the fish. However, a detailed research on the relationship between the flexible joint and the thrust generation is needed. In this paper, the compliant joint of a caudal fin is implemented in the driving mechanism of a robotic fish. By varying the driving frequency and stiffness of the compliant joint, the relationship between the thrust generation and the stiffness of the flexible joint is investigated. In general, as the frequency increases, the thrust increases. When higher driving frequency is applied, higher stiffness of the flexible joint is needed to maximize the thrust. The bending angles between the compliant joint and the caudal fin are compared with the changes of the thrust in one cycle. This result can be used to design the robotic fish which can be operated at the maximum thrust condition using the appropriate stiffness of the compliant joint.

순응성 관절을 갖는 2축 도립 진자의 자세 제어 (Attitude Control of The Double Inverted Pendulum with Compliant Joint)

  • 전세중;이건영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2983-2985
    • /
    • 1999
  • This paper presents the attitude control of the double inverted pendulum with compliant joint. The biped robot with compliant ankle joint instead of a motor have a good contact between it's sole and ground in the uneven ground. The compliant ankle joint proposed here is composed of springs and mechanical constraint. The lower link is hinged on the plate to free for rotation in the vertical plate. The upper link is connected to the lower link through a DC motor. The DC motor is used to control the posture of the pendulum by adjusting the position of the upper link. The algorithm for controlling a proposed inverted pendulum is nonlinear feedback controller. Simulation with mathematical model are conducted to show the validity of the proposed controller.

  • PDF

인대 구조에 기인한 유연 경첩 관절의 설계 (Design of Compliant Hinge Joints inspired by Ligamentous Structure)

  • 이건;윤덕찬;최영진
    • 로봇학회논문지
    • /
    • 제14권4호
    • /
    • pp.237-244
    • /
    • 2019
  • This paper suggests novel types of joint mechanisms composed of elastic strings and rigid bodies. All of the human hinge joints have the articular capsule and a pair of collateral ligaments. These fibrous tissues make the joint compliant and stable. The proposed mechanism closely imitates the human hinge joint structure by using the concept of tensegrity. The resultant mechanism has several characteristics shown commonly from both the tensegrity structure and the human joint such as compliance, stability, lightweight, and non-contact between rigid bodies. In addition, the role and feature of the human hinge joints vary according to the origins of a pair of collateral ligaments. Likewise, the locations of two strings corresponding to a pair of collateral ligaments produce different function and motion of the proposed mechanism. It would be one of the advantages obtained from the proposed mechanism. How to make a joint mechanism with different features is also suggested in this paper.

컴플라이언트 메커니즘 설계를 위한 바닥 보 구조 기반 조인트 강성 조절법 (Ground Beam Structure Based Joint Stiffness Controlling Method for Compliant Mechanisms)

  • 장강원;김윤영;김명진
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1187-1193
    • /
    • 2006
  • Traditionally, the continuum-based topology optimization methods employing the SIMP technique have been used to design compliant mechanisms. Although they have been successful, the optimized mechanisms by the methods are usually difficult to manufacture because of their geometrical complexities. The objective of this study is to develop a topology optimization method that can produce easy-to-fabricate mechanism structure. The proposed method is a ground beam method where beam connectivity is controlled by the beam joint stiffness. In this approach, beam joint stiffness determines the mechanism configuration. Because b the ground structure beams have uniform thicknesses varying only discretely, the resulting mechanism topologies become easily manufacturable.

Compliance Analysis and Vibration Control of the Safe Arm with MR-based Passive Compliant Joints

  • Yun, Seung-Kook;Yoon, Seong-Sik;Kang, Sung-Chul;Yeo, In-Teak;Kim, Mun-Sang;Lee, Chong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2010-2015
    • /
    • 2003
  • In this paper, a design and control of the safe arm with passive compliant joints(PCJ) is presented. Each PCJ has a magneto- rheological damper and maximum 6 springs. Compliance analysis in Cartesian space is performed with the compliance ellipsoid; this analysis shows a map between compliance in the joint space and compliance in Cartesian space. Vibration control of the arm using an input shaping technique is also presented; the results of a simulation and an experiment prove that a fast motion of the safe arm without residual vibration can be performed.

  • PDF

Adaptive compliant control for scara manipulator

  • Yee, Yanghyi;Ka, Minho;Kim, Sungwoo;Park, Mignon;Lee, Sangbae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1322-1326
    • /
    • 1990
  • In this paper, compliant motion control of a manipualator in manipulator is proposed by using the self-tuning adaptive controller. Compliant motion is needed in order to applicated to complicated and accurate fields such as assembly operation in which several parts are matched. For a control method of compliant motion hybrid control is used so forces and position control are proposed selectively through a closed feedback loop. By contacting with environment, the uncertainties higher. Self-tuning controller which adapts to variable dynamic response is applied to compliant motion control in order to satisfy the desired operation. The applicability of the suggested algorithm was confirmed by simulation of the contour tracking task of four joint manipulator.

  • PDF