• Title/Summary/Keyword: Complexity-Weighted

Search Result 156, Processing Time 0.027 seconds

A Study of Use of Body Motions and Body-weighted Values for Motion Display in Virtual Characters (신체 가중치를 이용한 동일 감정 표현의 몸동작 변형)

  • Lee, Chang-Sook;Jin, Da-Xing;Um, Ky-Hyun;Cho, Kyung-Eun
    • Journal of Korea Game Society
    • /
    • v.10 no.6
    • /
    • pp.125-135
    • /
    • 2010
  • Body motions are commonly used to express emotions in virtual characters based on body parts, which are frequently employed in games. For this purpose, it is necessary to create different types of animations corresponding to the emotions shown by virtual characters. Therefore, a large of number of animations should be created for different gestures depending on the level of human emotion. In this paper, we propose a method for displaying gestures with various degrees of complexity on the basis of the level of emotion in virtual characters. In particular, this method can be used to display passive and exaggerated expressions by adding weighted values to the frames that rotate the characters to make them show different gestures depending on the level of emotion. To verify the effectiveness of the proposed method, we use the Emotional Animation Tool (EATool), with which body-weighted values can be applied to the actual or virtual characters. After assigning different emotions to walking motions in the newly developed environment, we apply different body-weighted values depending on the level of each emotion. The results of a comparative test reveal that a given type of walking motion differs with the level of emotion.

Self-Adaptive Performance Improvement of Novel SDD Equalization Using Sigmoid Estimate and Threshold Decision-Weighted Error (시그모이드 추정과 임계 판정 가중 오차를 사용한 새로운 SDD 등화의 자기적응 성능 개선)

  • Oh, Kil Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.17-22
    • /
    • 2016
  • For the self-adaptive equalization of higher-order QAM systems, this paper proposes a new soft decision-directed (SDD) algorithm that opens the eye patterns quickly as well as significantly reducing the error level in the steady-state when it is applied to the initial equalization stage with completely closed eye patterns. The proposed method for M-QAM application minimized the computational complexity of the existing SDD by the symbol estimated based on the two symbols closest to the observation, and greatly simplified the soft decision independently of the QAM order. Furthermore, in the symbol estimating it increased the reliability of the estimates by applying the superior properties of the sigmoid function and avoiding the erroneous estimation of the threshold function. In addition, the initialization performance was improved when an error is generated to update the equalizer, weighting the symbol decision by the threshold function to the error, resulting in an extension of the range of error fluctuations. As a result, the proposed method improves remarkably the computational complexity and the properties of initialization and convergence of the traditional SDD. Through simulations for 64-QAM and 256-QAM under multipath channel conditions with additive noise, the usefulness of the proposed methods was confirmed by comparing the performance of the proposed 2-SDD and two forms of weighted 2-SDD with CMA.

Weighted Energy Detector for Detecting Uunknown Threat Signals in Electronic Warfare System in Weak Power Signal Environment (전자전 미약신호 환경에서 미상 위협 신호원의 검출 성능 향상을 위한 가중 에너지 검출 기법)

  • Kim, Dong-Gyu;Kim, Yo-Han;Lee, Yu-Ri;Jang, Chungsu;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.3
    • /
    • pp.639-648
    • /
    • 2017
  • Electronic warfare systems for extracting information of the threat signals can be employed under the circumstance where the power of the received signal is weak. To precisely and rapidly detect the threat signals, it is required to use methods exploiting whole energy of the received signals instead of conventional methods using a single received signal input. To utilize the whole energy, numerous sizes of windows need to be implemented in a detector for dealing with all possible unknown length of the received signal because it is assumed that there is no preliminary information of the uncooperative signals. However, this grid search method requires too large computational complexity to be practically implemented. In order to resolve this complexity problem, an approach that reduces the number of windows by selecting the smaller number of representative windows can be considered. However, each representative window in this approach needs to cover a certain amount of interval divided from the considering range. Consequently, the discordance between the length of the received signal and the window sizes results in degradation of the detection performance. Therefore, we propose the weighted energy detector which results in improved detection performance comparing with the conventional energy detector under circumstance where the window size is smaller than the length of the received signal. In addition, it is shown that the proposed method exhibits the same performance under other circumstances.

Efficient Feature Selection Based Near Real-Time Hybrid Intrusion Detection System (근 실시간 조건을 달성하기 위한 효과적 속성 선택 기법 기반의 고성능 하이브리드 침입 탐지 시스템)

  • Lee, Woosol;Oh, Sangyoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.471-480
    • /
    • 2016
  • Recently, the damage of cyber attack toward infra-system, national defence and security system is gradually increasing. In this situation, military recognizes the importance of cyber warfare, and they establish a cyber system in preparation, regardless of the existence of threaten. Thus, the study of Intrusion Detection System(IDS) that plays an important role in network defence system is required. IDS is divided into misuse and anomaly detection methods. Recent studies attempt to combine those two methods to maximize advantagesand to minimize disadvantages both of misuse and anomaly. The combination is called Hybrid IDS. Previous studies would not be inappropriate for near real-time network environments because they have computational complexity problems. It leads to the need of the study considering the structure of IDS that have high detection rate and low computational cost. In this paper, we proposed a Hybrid IDS which combines C4.5 decision tree(misuse detection method) and Weighted K-means algorithm (anomaly detection method) hierarchically. It can detect malicious network packets effectively with low complexity by applying mutual information and genetic algorithm based efficient feature selection technique. Also we construct upgraded the the hierarchical structure of IDS reusing feature weights in anomaly detection section. It is validated that proposed Hybrid IDS ensures high detection accuracy (98.68%) and performance at experiment section.

Improvement of the MPEG-4 Still Image Compression Using Visually Weighted Quantizers (인간 시각 양자화기를 이용한 MPEG-4 정지영상 압축 방법의 성능 개선)

  • 김민구;김승종;정제창
    • Journal of Broadcast Engineering
    • /
    • v.2 no.2
    • /
    • pp.104-113
    • /
    • 1997
  • In this paper, we investigate on the techniques for still image compression based on the wavelet transform, which will be adopted as a part of the MPEG-4 compression standards. Also we propose an effective still image compression technique, which is simpler than the MPEG-4 compression method and is improved by using a visually weighted quantizer based to HVS(Human Visual System), Simulations are carried out and compared with the algorithm proposed in MPEG-4. The simulation results show that the proposed method in this paper gives much better image quality than that of the method in MPEG-4. Also, except the case where the compression ratio is high, it shows that the proposed method has lower in complexity and provides a better subjective and objective image quality than EZW in most cases. Since wavelet transform well reflects HVS, the compressed image rarely causes blocking artifact compared with JPEG, and in most cases, it shows considerable quality improvement over JPEG.

  • PDF

Multiobjective Space Search Optimization and Information Granulation in the Design of Fuzzy Radial Basis Function Neural Networks

  • Huang, Wei;Oh, Sung-Kwun;Zhang, Honghao
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.636-645
    • /
    • 2012
  • This study introduces an information granular-based fuzzy radial basis function neural networks (FRBFNN) based on multiobjective optimization and weighted least square (WLS). An improved multiobjective space search algorithm (IMSSA) is proposed to optimize the FRBFNN. In the design of FRBFNN, the premise part of the rules is constructed with the aid of Fuzzy C-Means (FCM) clustering while the consequent part of the fuzzy rules is developed by using four types of polynomials, namely constant, linear, quadratic, and modified quadratic. Information granulation realized with C-Means clustering helps determine the initial values of the apex parameters of the membership function of the fuzzy neural network. To enhance the flexibility of neural network, we use the WLS learning to estimate the coefficients of the polynomials. In comparison with ordinary least square commonly used in the design of fuzzy radial basis function neural networks, WLS could come with a different type of the local model in each rule when dealing with the FRBFNN. Since the performance of the FRBFNN model is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules and the orders of the polynomials present in the consequent parts of the rules, we carry out both structural as well as parametric optimization of the network. The proposed IMSSA that aims at the simultaneous minimization of complexity and the maximization of accuracy is exploited here to optimize the parameters of the model. Experimental results illustrate that the proposed neural network leads to better performance in comparison with some existing neurofuzzy models encountered in the literature.

WWCLOCK: Page Replacement Algorithm Considering Asymmetric I/O Cost of Flash Memory (WWCLOCK: 플래시 메모리의 비대칭적 입출력 비용을 고려한 페이지 교체 알고리즘)

  • Park, Jun-Seok;Lee, Eun-Ji;Seo, Hyun-Min;Koh, Kern
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.913-917
    • /
    • 2009
  • Flash memories have asymmetric I/O costs for read and write in terms of latency and energy consumption. However, the ratio of these costs is dependent on the type of storage. Moreover, it is becoming more common to use two flash memories on a system as an internal memory and an external memory card. For this reason, buffer cache replacement algorithms should consider I/O costs of device as well as possibility of reference. This paper presents WWCLOCK(Write-Weighted CLOCK) algorithm which directly uses I/O costs of devices along with recency and frequency of cache blocks to selecting a victim to evict from the buffer cache. WWCLOCK can be used for wide range of storage devices with different I/O cost and for systems that are using two or more memory devices at the same time. In addition to this, it has low time and space complexity comparable to CLOCK algorithm. Trace-driven simulations show that the proposed algorithm reduces the total I/O time compared with LRU by 36.2% on average.

Structural Design of FCM-based Fuzzy Inference System : A Comparative Study of WLSE and LSE (FCM기반 퍼지추론 시스템의 구조 설계: WLSE 및 LSE의 비교 연구)

  • Park, Wook-Dong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.981-989
    • /
    • 2010
  • In this study, we introduce a new architecture of fuzzy inference system. In the fuzzy inference system, we use Fuzzy C-Means clustering algorithm to form the premise part of the rules. The membership functions standing in the premise part of fuzzy rules do not assume any explicit functional forms, but for any input the resulting activation levels of such radial basis functions directly depend upon the distance between data points by means of the Fuzzy C-Means clustering. As the consequent part of fuzzy rules of the fuzzy inference system (being the local model representing input output relation in the corresponding sub-space), four types of polynomial are considered, namely constant, linear, quadratic and modified quadratic. This offers a significant level of design flexibility as each rule could come with a different type of the local model in its consequence. Either the Least Square Estimator (LSE) or the weighted Least Square Estimator (WLSE)-based learning is exploited to estimate the coefficients of the consequent polynomial of fuzzy rules. In fuzzy modeling, complexity and interpretability (or simplicity) as well as accuracy of the obtained model are essential design criteria. The performance of the fuzzy inference system is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules(clusters) and the order of polynomial in the consequent part of the rules. Accordingly we can obtain preferred model structure through an adjustment of such parameters of the fuzzy inference system. Moreover the comparative experimental study between WLSE and LSE is analyzed according to the change of the number of clusters(rules) as well as polynomial type. The superiority of the proposed model is illustrated and also demonstrated with the use of Automobile Miles per Gallon(MPG), Boston housing called Machine Learning dataset, and Mackey-glass time series dataset.

A time recursive approach for do-interlacing using improved ELA and motion compensation based on hi-directional BMA (개선된 ELA와 양방향 BMA기반의 움직임 보상을 이용한 재귀적 디인터레이싱)

  • 변승찬;변정문;김경환
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.87-97
    • /
    • 2004
  • In this paper, we propose an algorithm for interlaced-to-progressive conversion by the weighted summation of the information collected from spatial do-interlacing method, in which the weighted edge based line average is applied, and the temporal method in which the motion compensation is employed by using hi-directional BMA (block matching algorithm). We employed time-recursive and motion adaptive processing as motion detection is involved. Also, a median filter is used to deal with limitation of the linear summation in which only an intermediate of values being involved is determined. The main goal of the approach is to overcome the shortcomings of each of the do-interlacing techniques without significant increment of the computational complexity, and the proposed method is apt to implement in hardware for real-time processing.

An Estimated Closeness Centrality Ranking Algorithm and Its Performance Analysis in Large-Scale Workflow-supported Social Networks

  • Kim, Jawon;Ahn, Hyun;Park, Minjae;Kim, Sangguen;Kim, Kwanghoon Pio
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1454-1466
    • /
    • 2016
  • This paper implements an estimated ranking algorithm of closeness centrality measures in large-scale workflow-supported social networks. The traditional ranking algorithms for large-scale networks have suffered from the time complexity problem. The larger the network size is, the bigger dramatically the computation time becomes. To solve the problem on calculating ranks of closeness centrality measures in a large-scale workflow-supported social network, this paper takes an estimation-driven ranking approach, in which the ranking algorithm calculates the estimated closeness centrality measures by applying the approximation method, and then pick out a candidate set of top k actors based on their ranks of the estimated closeness centrality measures. Ultimately, the exact ranking result of the candidate set is obtained by the pure closeness centrality algorithm [1] computing the exact closeness centrality measures. The ranking algorithm of the estimation-driven ranking approach especially developed for workflow-supported social networks is named as RankCCWSSN (Rank Closeness Centrality Workflow-supported Social Network) algorithm. Based upon the algorithm, we conduct the performance evaluations, and compare the outcomes with the results from the pure algorithm. Additionally we extend the algorithm so as to be applied into weighted workflow-supported social networks that are represented by weighted matrices. After all, we confirmed that the time efficiency of the estimation-driven approach with our ranking algorithm is much higher (about 50% improvement) than the traditional approach.