• Title/Summary/Keyword: Complexity System

Search Result 3,513, Processing Time 0.044 seconds

Relay-assisted multiuser MIMO-DQSM system for correlated fading channels

  • Francisco R. Castillo-Soria;Carlos Gutierrez;Fermin M. Maciel-Barboza;Viktor I. Rodriguez Abdala;Jayanta Datta
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.184-193
    • /
    • 2024
  • This paper presents the performance evaluation of an amplify-and-forward (AF) relay-assisted multiuser multiple input-multiple output (MU-MIMO) downlink transmission system for correlated fading channels. The overall system performance was improved by incorporating a double-quadrature spatial modulation (DQSM) scheme. The bit error rate (BER) performance and detection complexity of the AF-MU-MIMO-DQSM system were analyzed and compared with those of a conventional AF-MU-MIMO system under the same conditions and parameters. The results showed that the correlated fading channel severely affected the performance of systems with higher spectral efficiency (SE). Considering an SE of 12 bpcu/user, the AF-MU-MIMO-DQSM system yielded a gain of up to 3 dB in BER performance compared with that of its conventional counterpart for the analyzed cases. In terms of detection complexity, the AF-MU-MIMO-DQSM system showed a reduction of up to 56 % compared with that of the conventional system for the optimal maximum likelihood detection criterion.

Iterative Channel Estimation for Higher Order Modulated STBC-OFDM Systems with Reduced Complexity

  • Basturk, Ilhan;Ozbek, Berna
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2446-2462
    • /
    • 2016
  • In this paper, a frequency domain Expectation-Maximization (EM)-based channel estimation algorithm for Space Time Block Coded-Orthogonal Frequency Division Multiplexing (STBC-OFDM) systems is investigated to support higher data rate applications in wireless communications. The computational complexity of the frequency domain EM-based channel estimation is increased when higher order constellations are used because of the ascending size of the search set space. Thus, a search set reduction algorithm is proposed to decrease the complexity without sacrificing the system performance. The performance results of the proposed algorithm is obtained in terms of Bit Error Rate (BER) and Mean Square Error (MSE) for 16QAM and 64QAM modulation schemes.

A DCT-Based Bisually Adaptive Quantization (DCT 기반의 시각 적응적 양자화 방법에 관한 연구)

  • Park, Sung-Chan;Kim, Jung-Hyun;Lee, Guee-Sang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.332-338
    • /
    • 2001
  • A visually adaptive quantization method of DCT-based images based on Human Visual System(HVS) is proposed. This approach uses the spatial masking in HVS characteristics to obtain higher compression ratio with relatively small degradation in the image quality. HVS is nonsensitive to an edge area, so a high complexity area is quantized coarsely in contrast to fine quantization of the low complexity area. The complexity of an area is estimated by the variance of DCT coefficients of the image. Experimental results demonstrate the performance of the proposed method and the resulting images show little difference from the original image in the subjective perception.

  • PDF

Efficient Algorithm and Architecture for Elliptic Curve Cryptographic Processor

  • Nguyen, Tuy Tan;Lee, Hanho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.118-125
    • /
    • 2016
  • This paper presents a new high-efficient algorithm and architecture for an elliptic curve cryptographic processor. To reduce the computational complexity, novel modified Lopez-Dahab scalar point multiplication and left-to-right algorithms are proposed for point multiplication operation. Moreover, bit-serial Galois-field multiplication is used in order to decrease hardware complexity. The field multiplication operations are performed in parallel to improve system latency. As a result, our approach can reduce hardware costs, while the total time required for point multiplication is kept to a reasonable amount. The results on a Xilinx Virtex-5, Virtex-7 FPGAs and VLSI implementation show that the proposed architecture has less hardware complexity, number of clock cycles and higher efficiency than the previous works.

Computationally Efficient Lattice Reduction Aided Detection for MIMO-OFDM Systems under Correlated Fading Channels

  • Liu, Wei;Choi, Kwonhue;Liu, Huaping
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.503-510
    • /
    • 2012
  • We analyze the relationship between channel coherence bandwidth and two complexity-reduced lattice reduction aided detection (LRAD) algorithms for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems in correlated fading channels. In both the adaptive LR algorithm and the fixed interval LR algorithm, we exploit the inherent feature of unimodular transformation matrix P that remains the same for the adjacent highly correlated subcarriers. Complexity simulations demonstrate that the adaptive LR algorithm could eliminate up to approximately 90 percent of the multiplications and 95 percent of the divisions of the brute-force LR algorithm with large coherence bandwidth. The results also show that the adaptive algorithm with both optimum and globally suboptimum initial interval settings could significantly reduce the LR complexity, compared with the brute-force LR and fixed interval LR algorithms, while maintaining the system performance.

AN ECHO CANCELLATION ALGORITHM FOR REDUCING THE HARDWARE COMPLEXITIES AND ANALYSIS ON ITS CONVERGENCE CHARACTERISTICS

  • LEE HAENG-WOO
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.637-645
    • /
    • 2006
  • An adaptive algorithm for reducing the hardware complexity is presented. This paper proposes a simplified LMS algorithm for the adaptive system and analyzes its convergence characteristics mathematically. An objective of the proposed algorithm is to reduce the hardware complexity. In order to test the performances, it is applied to the echo canceller, and a program is described. The results from simulations show that the echo canceller adopting the proposed algorithm achieves almost the same performances as one adopting the NLMS algorithm. If an echo canceller is implemented with this algorithm, its computation quantities are reduced to the half as many as the one that is implemented with the LMS algorithm, without so much degradation of performances.

COMPLEXITY OF CONTINUOUS SEMI-FLOWS AND RELATED DYNAMICAL PROPERTIES

  • Zhang, Feng;He, Lian-Fa;Lu, Qi-Shao
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.225-236
    • /
    • 2009
  • The equicontinuity and scattering properties of continuous semi-flows are studied on a compact metric space. The main results are obtained as follows: first, the complexity function defined by the spanning set is bounded if and only if the system is equicontinuous; secondly, if a continuous semi-flow is topologically weak mixing, then it is pointwise scattering; thirdly, several equivalent conditions for the time-one map of a continuous semi-flow to be scattering are presented; Finally, for a minimal continuous map it is shown that the "non-dense" requirement is unnecessary in the definition of scattering by using open covers.

A Modified PTS Algorithm for P APR Reduction ill OFDM Signal

  • Kim, Jeong-Goo;Wu, Xiaojun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3C
    • /
    • pp.163-169
    • /
    • 2011
  • Partial transmit sequence (PTS) algorithm is known as one of the most efficient ways to reduce the peak-to-average power ratio (PAPR) in the orthogonal frequency division multiplexing (OFDM) system. The PTS algorithm, however, requires large numbers of computation to implement. Thus there has been a trade-off between performance of PAPR reduction and computational complexity. In this paper, the performance of PAPR reduction and computation complexity of PTS algorithms are analyzed and compared through computer simulations. Subsequently, a new PTS algorithm is proposed which can be a reasonable method to reduce the PAPR of OFDM when both the performance of PAPR reduction and computational complexity are considered simultaneously.

Reduced Complexity Signal Detection for OFDM Systems with Transmit Diversity

  • Kim, Jae-Kwon;Heath Jr. Robert W.;Powers Edward J.
    • Journal of Communications and Networks
    • /
    • v.9 no.1
    • /
    • pp.75-83
    • /
    • 2007
  • Orthogonal frequency division multiplexing (OFDM) systems with multiple transmit antennas can exploit space-time block coding on each subchannel for reliable data transmission. Spacetime coded OFDM systems, however, are very sensitive to time variant channels because the channels need to be static over multiple OFDM symbol periods. In this paper, we propose to mitigate the channel variations in the frequency domain using a linear filter in the frequency domain that exploits the sparse structure of the system matrix in the frequency domain. Our approach has reduced complexity compared with alternative approaches based on time domain block-linear filters. Simulation results demonstrate that our proposed frequency domain block-linear filter reduces computational complexity by more than a factor of ten at the cost of small performance degradation, compared with a time domain block-linear filter.

A comparison study of the performance and computational complexity of various MIMO technoques in WiBro downlink system (WiBro 다운링크 환경에서 여러 가지 MIMO 기법의 성능 및 연산량에 대한 비교 연구)

  • Hong, Gyeong-Hua;Oh, Tae-Youl;Choi, Seung-Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.2
    • /
    • pp.49-55
    • /
    • 2008
  • Combining OFDMA with MIMO is the key technology for the 4G mobile communication. OFDMA can relieve inherent difficulties of high-speed transmission. MIMO technology can be largely categorized into two techniques: one is STC for diversity gain and the other is SM for high frequency efficiency. In this paper, we depict various MIMO techniques of two transmit antenna and compare the computational complexity of decoding process for the techniques. Then, we analysis the performance of the techniques in the WiBro downlink environment based on OFDMA. We perfer ML algorithm which is the optimum performance and ZF algorithm of least computational complexity for SM detection.