DOI QR코드

DOI QR Code

Relay-assisted multiuser MIMO-DQSM system for correlated fading channels

  • Francisco R. Castillo-Soria (Telecommunications Department, Faculty of Science, Universidad Autonoma de San Luis Potosi (UASLP)) ;
  • Carlos Gutierrez (Telecommunications Department, Faculty of Science, Universidad Autonoma de San Luis Potosi (UASLP)) ;
  • Fermin M. Maciel-Barboza (Facultad de Ingenieria Mecanica y Electrica, Universidad de Colima) ;
  • Viktor I. Rodriguez Abdala (Electrical Engineering Academic Unit, Autonomous University of Zacatecas) ;
  • Jayanta Datta (Department of Electrical Engineering, University of Chile)
  • Received : 2022.10.28
  • Accepted : 2023.10.12
  • Published : 2024.04.20

Abstract

This paper presents the performance evaluation of an amplify-and-forward (AF) relay-assisted multiuser multiple input-multiple output (MU-MIMO) downlink transmission system for correlated fading channels. The overall system performance was improved by incorporating a double-quadrature spatial modulation (DQSM) scheme. The bit error rate (BER) performance and detection complexity of the AF-MU-MIMO-DQSM system were analyzed and compared with those of a conventional AF-MU-MIMO system under the same conditions and parameters. The results showed that the correlated fading channel severely affected the performance of systems with higher spectral efficiency (SE). Considering an SE of 12 bpcu/user, the AF-MU-MIMO-DQSM system yielded a gain of up to 3 dB in BER performance compared with that of its conventional counterpart for the analyzed cases. In terms of detection complexity, the AF-MU-MIMO-DQSM system showed a reduction of up to 56 % compared with that of the conventional system for the optimal maximum likelihood detection criterion.

Keywords

References

  1. P. S. R. Henrique and R. Prasad, 6G the road to the future wireless technologies 2030, 6G the road to the future wireless technologies 2030, River Publishers, 2021, pp. i-xxvi.
  2. E.-K. Hong, I. Lee, B. Shim, Y.-C. Ko, S.-H. Kim, S. Pack, K. Lee, S. Kim, J.-H. Kim, Y. Shin, Y. Kim, and H. Jung, 6G R&D vision: requirements and candidate technologies, J. Commun. Netw. 24 (2022), no. 2, 232-245.
  3. S. Dang, M. Di Renzo, M. Wen, M. Chafii, Y. Ko, B. F. Uchoa-Filho, and A. Younis, Editorial: index modulation for 6G communications, Front. Commun. Netw. 2 (2021), 1-2.
  4. R. Dilli, Design and feasibility verification of 6G wireless communication systems with state of the art technologies, Int. J. Wirel. Inf. Netw. 29 (2022), 93-117. https://doi.org/10.1007/s10776-021-00546-3
  5. E. Basar, M. Wen, R. Mesleh, M. Di Renzo, Y. Xiao, and H. Haas, Index modulation techniques for next-generation wireless networks, IEEE Access 5 (2017), 16693-16746. https://doi.org/10.1109/ACCESS.2017.2737528
  6. H. Bitra and P. Ponnusamy, Analysis of GSM-SM over κ-μ, η-μ and α-μ fading channels, Wirel. Pers. Commun. 117 (2021), 2679-2693. https://doi.org/10.1007/s11277-019-06931-9
  7. R. Mesleh, S. S. Ikki, and H. M. Aggoune, Quadrature spatial modulation, IEEE Trans. Veh. Technol. 64 (2014), no. 6, 2738-2742.
  8. F. R. Castillo-Soria, J. Cortez, C. A. Gutierrez, M. Luna-Rivera, and A. Garcia-Barrientos, Extended quadrature spatial modulation for MIMO wireless communications, Phys. Commun. 32 (2019), 88-95. https://doi.org/10.1016/j.phycom.2018.11.006
  9. N. T. Nguyen, Q.-D. Vu, K. Lee, and M. Juntti, Hybrid relay-reflecting intelligent surface-assisted wireless communications, IEEE Trans. Veh. Technol. 71 (2022), no. 6, 6228-6244.
  10. N. Qi, W. Wang, D. Ye, M. Wang, T. A. Tsiftsis, and R. Yao, Energy-efficient full-duplex UAV relaying networks: trajectory design for channel-model-free scenarios, ETRI J. 43 (2021), no. 3, 436-446.
  11. X. Shang, H. Yin, Y. Wang, M. Li, and Y. Wang, Secure multiuser scheduling for hybrid relay-assisted wireless powered cooperative communication networks with full-duplex destination-based jamming, IEEE Access 9 (2021), 49774-49787. https://doi.org/10.1109/ACCESS.2021.3067472
  12. S. Yunlong and T. A. Gulliver, Precoding for multiuser MIMO full-duplex amplify-and-forward relay uplink communication systems, SN Appl. Sci. 2 (2020), no. 4, 1-7.
  13. S. Singh, D. Mitra, and R. K. Baghel, Performance evaluation of relay assisted wireless powered network over fluctuating two ray fading channel with diversity reception, Wirel. Pers. Commun. 121 (2021), 1739-1755. https://doi.org/10.1007/s11277-021-08718-3
  14. W. Belaoura, K. Ghanem, M. Z. Shakir, and M. O. Hasna, Performance and user association optimization for UAV relay-assisted mm-wave massive MIMO systems, IEEE Access 10 (2022), 49611-49624. https://doi.org/10.1109/ACCESS.2022.3172436
  15. A. Afana, R. Mesleh, S. Ikki, and I. E. Atawi, Performance of quadrature spatial modulation in amplify-and-forward cooperative relaying, IEEE Commun. Lett. 20 (2015), no. 2, 240-243.
  16. S. Althunibat and R. Mesleh, Performance analysis of quadrature spatial modulation in two-way relaying cooperative networks, IET Commun. 12 (2018), no. 4, 466-472.
  17. A. Afana, E. Erdogan, and S. Ikki, Quadrature spatial modulation for cooperative MIMO 5G wireless networks, (IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA), 2016, pp. 1-5.
  18. F. R. Castillo-Soria, AF relay assisted multiuser MIMO-DQSM downlink transmission system, Electron. Lett. 56 (2020), 682-684. https://doi.org/10.1049/el.2020.0239
  19. S. Li, P. J. Smith, P. A. Dmochowski, and J. Yin, Analysis of analog and digital MRC in massive MU-MIMO systems over correlated channels, J. Commun. Netw. 23 (2021), no. 6, 454-462.
  20. F. R. Castillo-Soria, J. Cortez, F. M. R. Maciel-Barbosa, V. I. Rodriguez-Abdal a, and R. Palacio, Low complexity detection for an AF relay assisted MIMO QSM system, (IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, Canada), 2019, pp. 689-694.
  21. A. Younis, S. Sinanovic, M. Di Renzo, R. Mesleh, and H. Haas, Generalised sphere decoding for spatial modulation, IEEE Trans. Commun. 61 (2013), no. 7, 2805-2815.
  22. Q. Tang, Y. Xiao, P. Yang, Q. Yu, and S. Li, A new low-complexity near-ML detection algorithm for spatial modulation, IEEE Wirel. Commun. Lett. 2 (2013), no. 1, 90-93.
  23. J. Wang, S. Jia, and J. Song, Signal vector based detection scheme for spatial modulation, IEEE Commun. Lett. 16 (2012), no. 1, 19-21.
  24. J. Li, X. Jiang, Y. Yan, W. Yu, S. Song, and M. H. Lee, Low complexity detection for quadrature spatial modulation systems, Wirel. Pers Commun. 95 (2017), 4171-4183. https://doi.org/10.1007/s11277-017-4057-y
  25. J. T. Gutierrez-Mena, C. A. Gutierrez, M. Luna-Rivera, D. U. Campos-Delgado, and J. V azquez-Castillo, A novel geometrical model for non-stationary MIMO vehicle-to-vehicle channels, IETE Tech. Rev. 36 (2019), no. 1, 27-38.
  26. M. Patzold, Mobile radio channels, Second, John Wiley and Sons, Chichester, UK, 2011.
  27. C. A. Gutierrez, J. T. Gutierrez-Mena, J. M. Luna-Rivera, D. U. Campos-Delgado, R. Vel azquez, and M. Patzold, Geometry-based statistical modeling of non-WSSUS mobile-to-mobile rayleigh fading channels, IEEE Trans. Veh. Technol. 67 (2017), no. 1, 362-377.