• Title/Summary/Keyword: Complex transfer center

Search Result 132, Processing Time 0.02 seconds

Synthesis and Characterization of heteroleptic Iridium Complex with Phenylpyridine and 5'-methyl-diphenylquinoline

  • Lee, Seung-Chan;Kim, Young-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.702-705
    • /
    • 2007
  • New heteroleptic tris-cyclometalated iridium complex, $Ir(ppy)_2(dpq-5CH_3)$, was prepared, where ppy and $dpq-5CH_3$ represent phenylpyridine and 2(5'-methyl)- 4-diphenylquinoline, respectively. The heteroleptic iridium complex shows high luminescence efficiency by the intramolecular energy transfer from the energy absorbing ppy ligands to the luminescent $dpq-5CH_3$ ligand leading to a decrease on quenching or energy deactivation.

  • PDF

Three-dimensional Mixed-use Complex Spaces and Setting Criteria for Road Sections for Three-dimensional Addressing

  • Kim, Ji Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.455-465
    • /
    • 2020
  • As cities continue to expand and additional underground structures are constructed, a policy is being planned to expand addresses, which are national framework data. In this study, the application scope of a proposed 3D (three-dimensional) mixed-use complex space for assigning 3D addresses was defined, based on past research on 3D address systems and by analyzing related laws. Underpass shopping malls, underground walkways (excluding underground shopping malls), and 3D mixed-use transfer centers with a gross floor area of 2,000㎡ or more are connected with each space by underground walkways or public paths. In addition, the detailed space corresponding to the public space of the 3D mixed-use complex space was presented and distinguished from the space to which the detailed address is assigned. The criteria for setting the road section were presented based on the intermediate space, which is a characteristic of 3D mixed-use complex spaces. The proposed criteria were applied to the Express Bus Terminal station (3D mixed-use transfer center) and COEX mall (underpass shopping malls). Thus, the road section was set for an unfamiliar 3D mixed-use complex space. However, by applying the proposed criteria to various 3D mixed-use complex spaces, additional and detailed criteria for different cases should be prepared.

Crystallization and Preliminary X-Ray Diffraction Analysis of BcOMT2 from Bacillus cereus: A Family of O-Methyltransferase

  • Cho, Jang-Hee;Lim, Yoong-Ho;Ahn, Joong-Hoon;Rhee, Sang-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.369-372
    • /
    • 2007
  • O-Methyltransferases (OMTs), one of the ubiquitous enzymes in plants, bacteria, and humans, catalyze a methyl-transfer reaction using S-adenosylmethionine and a wide range of phenolics as a methyl donor and acceptor, respectively. Substrates for most bacterial OMTs have largely remained elusive, but recent investigation using BcOMT2, an OMT from Bacillus cereus, suggested that ortho-dihydroxyflavonoids could serve as substrates. To elucidate the functional and structural features of BcOMT2, we expressed, and purified BcOMT2, and crystallized an apoenzyme and its ternary complex in the presence of a flavonoid and S-adenosylhomocysteine. Each crystal diffracted to $1.8{\AA}$ with its space group of C2 and $P2_{1}2_{1}2_{1}$, respectively. Structural analysis of apo-BcOMT2 and its ternary complex will provide the structural basis of methyl transfer onto (iso)flavonoids in a regiospecific manner.

Resolution of a Multi-Step Electron Transfer Reaction by Time Resolved Impedance Measurements: Sulfur Reduction in Nonaqueous Media

  • Park, Jin-Bum;Chang, Byoung-Yong;Yoo, Jung-Suk;Hong, Sung-Young;Park, Su-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1523-1530
    • /
    • 2007
  • The first reduction peak of the cyclic voltammogram (CV) for sulfur reduction in dimethyl sulfoxide has been studied using time resolved Fourier transform electrochemical impedance spectroscopic (FTEIS) analysis of small potential step chronoamperometric currents. The FTEIS analysis results reveal that the impedance signals obtained during short potential steps can be resolved into electron transfer reactions of two different time constants in a high frequency region. The FTEIS method provides snap shots of impedance profiles during an earlier phase of the reaction, leading to time resolved EIS measurements. Our results obtained by the FTEIS analysis are consistent with a series of electron transfer and chemical equilibrium steps of a complex reaction, making up an ECE (electrochemical-chemical-electrochemical) mechanism postulated from the results of computer simulation.

Synthesis and Characterization of Nickel(II) Tetraaza Macrocyclic Complex with 1,1-Cyclohexanediacetate Ligand

  • Lim, In-Taek;Kim, Chong-Hyeak;Choi, Ki-Young
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.6
    • /
    • pp.427-432
    • /
    • 2018
  • The reaction of [$[Ni(L)]Cl_2{\cdot}2H_2O$ (L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[$14,4,0^{1.18},0^{7.12}$]docosane) with 1,1-cyclohexanediacetic acid ($H_2cda$) yields mononuclear nickel(II) complex, [$Ni(L)(Hcda^-)_2$] (1). This complex has been characterized by X-ray crystallography, electronic absorption, cyclic voltammetry and thermogravimetric analyzer. The crystal structure of 1 exhibits a distorted octahedral geometry with four nitrogen atoms of the macrocycle and two 1,1-cyclohexanediacetate ligands. It crystallizes in the triclinic system P-1 with a = 11.3918(7), b = 12.6196(8), $c=12.8700(8){\AA}$, $V=1579.9(2){\AA}^3$, Z = 2. Electronic spectrum of 1 also reveals a high-spin octahedral environment. Cyclic voltammetry of 1 undergoes one wave of a one-electron transfer corresponding to $Ni^{II}/Ni^{III}$ process. TGA curve for 1 shows three-step weight loss. The electronic spectra, electrochemical and TGA behavior of the complex are significantly affected by the nature of the axial $Hcda^-$ ligand.

Understanding University Industry Technology Transfer: Relationship Management Approaches of Leading Universities in Europe And USA

  • Schneider, Jan-Philip;Kock, Alexander;Schultz, Carsten
    • World Technopolis Review
    • /
    • v.4 no.2
    • /
    • pp.62-78
    • /
    • 2015
  • The importance of university technology transfer has widely been brought to the center of attention over the last decades. Research and practice thereby often concentrate on issues related to patenting and licensing or entrepreneurship but abstract away from relationship- and network-focused initiatives. In this paper, we argue that efforts to systematically develop close, long-term collaboration partnerships - although complex and resource intensive - are likely to be more beneficial for both universities and industry in the long run. Drawing on data derived from interviews with technology transfer executives of 22 leading European and U.S. universities, we analyze and discuss well-established practices of network and relationship management and their possible impact on technology transfer success. Our findings indicate that dedicated relationship management approaches can yield a sustainable competitive advantage for universities. We thereby shift the focus away from transaction-orientation towards more forward-looking relationship-centric approaches and discuss their institutionalization in great detail.

A Numerical Study on Real Gas Effect due to High Temperature and Speed Flow (고온 고속유동으로 인한 실제 기체효과의 수치해석적 연구)

  • 송동주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2431-2442
    • /
    • 1994
  • In this paper the efficient space marching Viscous Shock Layer and Parabolized Navier-Stokes method have been applied to study the complex 3-D hypersonic equilibrium chemically reacting flowfilelds over sphere-cone($10^{\circ}$) vehicle at low angles of attack($0^{\circ}~5^{\circ}), Mach 20, and an altitude of 35km. The current bluntbody/afterbody space marching numerical method predicts the complex flowfields accurately and efficiently even on a small computer. The shock thickness from equilibrium air model is thinner than that from the perfect gas model. The windside wall heat-transfer rate, pressure and skin friction force were increased significantly when compared with those of leeside. The CA, CN, CM were increased almost linearly with the angle of attack in this region. The wall pressure, heat transfer, skin friction and axial force coeffient from equilibrium model were much higher than those from perfect gas model. The center of pressure moved forward with the increase of angle of attack.

Assessment of Transfer Center by Facility Design Analysis (설계분석 프로그램을 이용한 환승센터 내부 및 외부 시설물 평가)

  • Lee, Jeong-Yeop;Han, Dong-Hui;Lee, Ju-Yeong;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.169-177
    • /
    • 2009
  • Establishing a public transportation transfer system that can reduce personal automobile use in the CBD and absorb the demand, thereby reducing congestion, is a necessity. However, the current transfer system and facilities are lacking in intermodal connectivity, require long transfer times, have complex flow patterns, and are lacking in information systems and convenience. The design analysis program of this study is to develop a program that executes computations of design analysis of transfer facilities by utilizing the existing design standards for facilities such as facilities for boarding and alighting, elements for convenience, and pedestrian facilities. Developing an analytical tool through which individual or integrated design analysis can be conducted on the design standards of various facilities is an important study for improving the work accuracy and efficiency of designing an actual transfer center.

A New Functional Model of Catechol Dioxygenases: Properties and Reactivity of [Fe(BLPA)DBC]$BPh_4$

  • Lim, Ji H.;Lee, Ho J.;이강봉;Jang, Ho G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1166-1172
    • /
    • 1997
  • [FeⅢ(BLPA)DBC]BPh4, a new functional model for the catechol dioxygenases, has been synthesized, where BLPA is bis((6-methyl-2-pyridyl)methyl)(2-pyridylmethyl)amine and DBC is 3,5-di-tert-butylcatecholate dianion. The BLPA complex has a structural feature that iron center has a six-coordinate geometry with N4O2 donor set. It exhibits EPR signals at g=5.5 and 8.0 which are typical values for the high-spin FeⅢ (S=5/2) complex with axial symmetry. The BLPA complex reacts with O2 within a few hours to afford intradiol cleavage (75%) and extradiol cleavage (15%) products which is very unique result of all [Fe(L)DBC] complexes studied. The iron-catecholate interaction of BLPA complex is significantly stronger, resulting in the enhanced covalency of the metal-catecholate bonds and low energy catecholate to FeⅢ charge transfer bands at 583 and 962 nm in CH3CN. The enhanced covalency is also reflected by the isotropic shifts exhibited by the DBC protons, which indicate increased semiquinone character. The greater semiquinone character in the BLPA complex correlates well with its high reactivity towards O2. Kinetic studies of the reaction of the BLPA complex with 1 atm O2 in CH3OH and CH2Cl2 under pseudo-first order conditions show that the BLPA complex reacts with O2 much slower than the TPA complex, where TPA is tris(2-pyridylmethyl)amine. It is presumably due to the steric effect of the methyl substituent on the pyridine ring. Nevertheless, both the high specificity and the fast kinetics can be rationalized on the basis of its low energy catecholate to FeⅢ charge transfer bands and large isotropic NMR shifts for the BLPA protons. These results provide insight into the nature of the oxygenation mechanism of the catechol dioxygenases.

A New Model for the Reduced Form of Purple Acid Phosphatase: Structure and Properties of $[Fe_2BPLMP(OAc)_2](BPh_4)_2$

  • 임선화;이진호;이강봉;강성주;허남휘;Jang, Ho G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.654-660
    • /
    • 1998
  • $[Fe^{II}Fe^{III}BPLMP(OAc)_2](BPh_4)_2$ (1), a new model for the reduced form of the purple acid phosphatases, has been synthesized by using a dinucleating ligand, 2,6-bis[((2-pyridylmethyl)(6-methyl-2-pyridylmethyl)amino) methyl]-4-methylphenol (HBPLMP). Complex I has been characterized by X-ray diffraction method as having (μ-phenoxo)bis(acetato)diiron core. Complex 1 was crystallized in the monoclinic space group C2/c with the following cell parameters: a=41.620(6) Å, b=14.020(3) Å, c=27.007(4) Å, β=90.60(2)°, and Z=8. The iron centers in the complex 1 are ordered as indicated by the difference in the Fe-O bond lengths which match well with typical $Fe^{III}-O\; and\; Fe^{II}-O$ bond lengths. Complex 1 has been studied by electronic spectral, NMR, EPR, SQUID, and electochemical methods. Complex 1 exhibits strong bands at 592 nm, 1380 nm in $CH_3CN$ (ε = 1.0 × 103 , 3.0 × 102). These are assigned to $phenolate-to-Fe^{III}$ and intervalence charge-transfer transitions, respectively. Its NMR spectrum exhibits sharp isotropically shifted resonances, which number half of those expected for a valence-trapped species, indicating that electron transfer between $Fe^{II}\;and\;Fe^{III}$ centers is faster than NMR time scale. This complex undergoes quasireversible one-electron redox processes. The $Fe^{III}_2/Fe^{II}Fe^{III}\;and\;Fe^{II}Fe^{III}/Fe^{II}_2$ redox couples are at 0.655 and -0.085 V vs SCE, respectively. It has $K_{comp}=3.3{\times}10^{12}$ representing that BPLMP/bis(acetate) ligand combination stabilizes a mixed-valence $Fe^{II}Fe^{III}$ complex in the air. Complex 1 exhibits a broad EPR signal centered near g=1.55 which is a characteristic feature of the antiferromagnetically coupled high-spin $Fe^{II}Fe^{III}$ system $(S_{total}=1/2)$. This is consistent with the magnetic susceptibility study showing the weak antiferromagnetic coupling $(J= - 4.6\;cm^{-1},\; H= - 2JS_1{\cdot}S2)$ between $Fe^{II}\; and \;Fe^{III}$center.