• 제목/요약/키워드: Complex topography

검색결과 202건 처리시간 0.022초

북한 지역의 산맥군이 영동 지역의 겨울철 강설 분포에 미치는 영향에 관한 수치 연구 (A Numerical Case Study Examining the Orographic Effect of the Northern Mountain Complex on Snowfall Distribution over the Yeongdong Region)

  • 이재규;김유진
    • 대기
    • /
    • 제19권4호
    • /
    • pp.345-370
    • /
    • 2009
  • Numerical experiments using the Weather Research and Forecasting (WRF) model were done to identify the role of the mountain ranges in the northern part of the Peninsula (referred as "the northern mountain complex"), in the occurrence of two heavy snowfall events over the Yeongdong region on 7-8 December 2002 and 20-21 January 2008. To this end, control simulations with the topography of the northern mountain complex and other simulations without the topography of the mountain complex were performed. It was revealed that the amount of snowfall over the Yeongdong region from the control simulation much more exceeded that of the simulation without the topography of the mountain complex. This increase of the snowfall amount over the Yeongdong region can be explained as follows: As the upstream flow approached the northern mountain complex, it deflected around the northern mountain complex due to the blocking effect of the mountains with a low Froude number less than ~0.16. This lead to the strengthening of northeasterly over the East Sea and over the Yeongdong region. The strong northeasterly is accompanied with much more snowfall over the Yeongdong region by intensifying air-mass modification over the sea and the orographic effect of the Taeback mountains. Thus, it was concluded that the topography of the northern mountain complex is one of the main factors in determining the distribution and amount of precipitation in the Yeongdong region when there is an expansion of the Siberian High toward the East Sea.

복잡 연안지역의 지표면 자료 상세화에 따른 수치 기상장 분석 (Analysis of Numerical Meteorological Fields due to the Detailed Surface Data in Complex Coastal Area)

  • 이화운;전원배;이순환;최현정
    • 한국대기환경학회지
    • /
    • 제24권6호
    • /
    • pp.649-661
    • /
    • 2008
  • The impact of the detailed surface data on regional meteorological fields in complex coastal area is studied using RAMS. Resolutions of topography and land use data are very important to numerical modeling, because high resolution data can reflect correct terrain height and detail characteristics of the surface. Especially, in complex coastal region such as Gwangyang area, southern area in Korean Peninsula, high resolution topography and land use data are indispensable for accurate modeling results. This study investigated the effect of resolutions of terrain data using SRTM with 3 second resolution topography and KLU with 1 second resolution land use data. Case HR was the experiment using high resolution data, whereas Case LR used low resolution data. In Case HR, computed surface temperature was higher than Case LR along the coastline and wind speed was $1{\sim}2m/s$ weaker than Case LR. Time series of temperature and wind speed indicated great agreement with the observation data. Moreover, Case HR indicated outstanding results on statistical analysis such as regression, root mean square error, index of agreement.

복잡지형 형상에 따른 풍력자원 보정에 관한 연구 (A study on wind source interpolation based on shape of complex topography)

  • 정의헌;문채주;김의선;장영학
    • 한국태양에너지학회 논문집
    • /
    • 제29권6호
    • /
    • pp.62-68
    • /
    • 2009
  • There has been a continuous increase in the utilization and utility value of renewable energy such as wind power generation in modem society. Wind condition is the absolute variable to the energy volume in the case of a wind power generation system. For this reason, wind power generators have already been installed in areas where wind velocity is high and the possibility of danger is very low. In other words, instability is likely if the wind velocity in an area is high and where a wind power generation system can be built. On the contrary, low wind velocity is possible in an area with high stability. Therefore, the design and manufacture of a wind power generation system should be carried out in a more complicated topography in order to secure a bigger market. This study examines and suggest how topography affects wind shear by analyzing the measured data in order to predict wind power generation more reliably.

A hybrid numerical simulation method for typhoon wind field over complex terrain

  • Huang, Wenfeng;Zhou, Huanlin
    • Wind and Structures
    • /
    • 제18권5호
    • /
    • pp.549-566
    • /
    • 2014
  • In spite of progress in the numerical simulation of typhoon wind field in atmospheric boundary layer (ABL), using typhoon wind field model in conjunction with Monte Carlo simulation method can only accurately evaluate typhoon wind field over a general terrain. This method is not enough for a reliable evaluation of typhoon wind field over the actual complex terrain with surface roughness and topography variations. To predict typhoon wind field over the actual complex terrain in ABL, a hybrid numerical simulation method combined typhoon simulation used the typhoon wind field model proposed by Meng et al. (1995) and CFD simulation in which the Reynolds averaged Navier-Stokes (RANS) equations and k-${\varepsilon}$ turbulence model are used. Typhoon wind filed during typhoon Dujuan and Imbudo are simulated using the hybrid numerical simulation method, and compared with the results predicted by the typhoon wind field model and the wind field measurement data collected by Fugro Geotechnical Services (FGS) in Hong Kong at the bridge site from the field monitoring system of wind turbulence parameters (FMS-WTP) to validate the feasibility and accuracy of the hybrid numerical simulation method. The comparison demonstrates that the hybrid numerical simulation method gives more accurate prediction to typhoon wind speed and direction, because the effect of topography is taken into account in the hybrid numerical simulation method.

서원건축(書院建築)의 좌향결정(坐向決定)과 풍수적요인(風水的要因)에 관(關)한 연구(硏究) (A Study on the Layout for Korean Academics of Classical Learning with Fengshui Factors)

  • 박정해
    • 건축역사연구
    • /
    • 제19권5호
    • /
    • pp.49-63
    • /
    • 2010
  • With the effect that the Yipsu-ryong(入首龍) of Ju-san(主山) influenced on the layout in the view of geomantic topography(形勢), how Ahn-san(案山) affected the layout plan of the Korean academics of classical learning(書院) is researched. And how the "Jirisinbeob(地理新法)" which had been written by Ho-sun-sin(胡舜申) was applied to the Korean academics of classical learning in the view of Li and Ch'i(理氣) is studied. In Fengshui, the method to pick out a site and to confirm the direction for building construction was divided into two, one of them was 'the geomantic topography', which included 'Ju-san following type(主山順應形)', 'Ahn-san stressing type(案山重視形)' and 'Ju-san & Ahn-san complex type(主 案山混合形)'. And the other is the 'Rule of direction(向法)'. The Korean academics of classical learning was applied by the geomantic topography of Fengshui for its layout and direction, regardless of political, regional and period factors. So when the Sa-rim(士林) needed to set direction for the Korean academics of classical learning, the ground that was appropriate to the geomantic topography of Fengshui was selected. Therefore, the Sa-rim who was abused in Neo-Confucianism had a mind of stressing geomantic topography of Fengshui and they applied it positively for building construction.

The effects of topography on local wind-induced pressures of a medium-rise building

  • Hitchcock, P.A.;Kwok, K.C.S.;Wong, K.S.;Shum, K.M.
    • Wind and Structures
    • /
    • 제13권5호
    • /
    • pp.433-449
    • /
    • 2010
  • Wind tunnel model tests were conducted for a residential apartment block located within the complex terrain of The Hong Kong University of Science and Technology (HKUST). The test building is typical of medium-rise residential buildings in Hong Kong. The model study was conducted using modelling techniques and assumptions that are commonly used to predict design wind loads and pressures for buildings sited in regions of significant topography. Results for the building model with and without the surrounding topography were compared to investigate the effects of far-field and near-field topography on wind characteristics at the test building site and wind-induced external pressure coefficients at key locations on the building facade. The study also compared the wind tunnel test results to topographic multipliers and external pressure coefficients determined from nine international design standards. Differences between the external pressure coefficients stipulated in the various standards will be exacerbated when they are combined with the respective topographic multipliers.

Heaps 모델을 이용한 천수만 해역의 조류해석 (Analysis of Tidal Current for Cheonsu Bay Using Heaps Model)

  • 박영기
    • 한국환경과학회지
    • /
    • 제4권2호
    • /
    • pp.245-251
    • /
    • 1995
  • Generally, It is Introduced to well-known other models without considering tidal current of the field. The paper presents field measurements and numerical model solving velocity field of Cheonsu Bay by two-dimensional tidal model. It was proved that this scheme is easy to handle complex topography. Computed results is represented characteristics of tidal current for Cheonsu Bay. The results of the study can be summarized as follows ; 1. Tide form number has 0.21 value. Tidal range estimated 630.3 cm on spring, 454.1 cm on mean and 277.9 cm on neap, respectively 2. Tidal current has semi-diurnal form. Distance of traveling observed 16.6 km on flood and 15.5 km on ebb. 3. Tidal velocity showed reversing current. It was found that tidal velocity above 100 cm/sec is about 20 %. 4. Computed results are in good agreement with the observed data. Applying the algorithm to Cheonsu Bay, velocity fields and dry bank phenomena are simulated well in spite of complex topography. 5. An advanced study on the effects of open boundary conditions should be continuously performed.

  • PDF

복잡한 지형의 임해지역에서 대기 분산계수의 평가 (Estimation of Atmospheric Dispersion Coefficients in A Coastal Area with Complex Topography)

  • 박옥현;천성남
    • 한국대기환경학회지
    • /
    • 제14권5호
    • /
    • pp.411-420
    • /
    • 1998
  • To estimate the dispersion coefficients in a coastal area with complex topography, several schemes using empirical equations expressed with and in lateral and vertical directions, respectively have been examined. Estimation results using these equations and meteorological data obtained from SODAR system were compared' with previously measured dispersion coefficients in other coastal areas. Validations of estimation results have been performed by comparing the measured concentrations with predicted ones empolying in Boryung coastal area. Important conclusions were drawn as follows; (1) Variations of lateral and vertical wind direction revealed different height dependency in upper and lower mixed boundary layer. (2) Because of turbulent constraint effect by large water body in a coastal region, the lateral and the vertical dispersion coefficients were smaller than those of P-G system. (3) As a result of examining the performance measure of these schemes through checking of coincidence between measured and predicted concentrations, vertical dispersion coefficients were smaller than those of P-G system, and the Cramer scheme was found to be more appropriate rather than others in the coastal area surrounding Boryung power plant.

  • PDF

음해법을 이용한 천수방정식의 수치해석 (Numerical Analysis of Shallow Water Equation with Fully Implicit Method)

  • 강주환;박상현;이길성
    • 대한토목학회논문집
    • /
    • 제13권3호
    • /
    • pp.119-127
    • /
    • 1993
  • 근래 천수방정식과 같은 2차원 수치해석에서 가장 널리 쓰이는 방법 중의 하나로 ADI 방법을 들 수 있다. 그러나 서해안과 같이 수심의 변화가 심하며 특히 해저협곡이 곳곳에 발달된 해역에서 조석에 관한 문제해결시 ADI 방법을 사용하면 소위 ADI 효과가 크게 우려된다. 이를 극복하기 위하여 완전 음해법으로 차분되고 CGS(conjugate gradient squared) 방법으로 해를 구하는 알고리즘을 개발하였다. 조간대 모의가 포함된 본 모형용 새만금 수역에 적용한 결과 지형의 복잡성에도 불구하고 유속장과 조간대 형성에 관한 수치적 모의가 만족스러운 결과를 보였다.

  • PDF

중간 속도 규모를 이용한 바람장의 균질성 평가 및 영향요소 분석 (The assessment of the Spatial Variation of the Wind Field using the Meso-velocity Scale and its Contributing Factors)

  • 이성은;신선희;하경자
    • 대기
    • /
    • 제20권3호
    • /
    • pp.343-353
    • /
    • 2010
  • A regional wind network with complex surface conditions must be designed with sufficient space and time resolution to resolve the local circulations. In this study, the spatial variations of the wind field observed in the Seoul and Jeju regional networks were evaluated in terms of annual, seasons, and months to assess the spatial homogeneity of wind fields within the regional networks. The coherency of the wind field as a function of separation distance between stations indicated that significant coherency was sometimes not captured by the network, as inferred by low correlations between adjacent stations. A meso-velocity scale was defined in terms of the spatial variability of the wind within the network. This problem is predictably most significant with weak winds, dull prevailing wind, clear skies and significant topography. The relatively small correlations between stations imply that the wind at a given point cannot be estimated by interpolating winds from the nearest stations. For the Seoul and Jeju regional network, the meso-velocity scale has typically a same order of magnitude as the speed of the network averaged wind, revealing the large spatial variability of the Jeju network station imply topography and weather. Significant scatter in the relationship between spatial variability of the wind field and the wind speed is thought to be related to thermally-generated flows. The magnitude of the mesovelocity scale was significantly different along separation distance between stations, wind speed, intensity of prevailing wind, clear and cloudy conditions, topography. Resultant wind vectors indicate much different flow patterns along condition of contributing factors. As a result, the careful considerations on contributing factors such as prevailing wind in season, weather, and complex surface conditions with topography and land/sea contrast are required to assess the spatial variations of wind field on a regional network. The results in the spatial variation from the mesovelocity scale are useful to represent the characteristics of regional wind speed including lower surface conditions over the grid scale of large scale atmospheric model.