• Title/Summary/Keyword: Complex surface

Search Result 2,359, Processing Time 0.034 seconds

Salting-out extraction of ginsenosides from the enzymatic hydrolysates of Panax quinquefolium based on ethanol/sodium carbonate system

  • Wei, Yingqin;Hou, Baojuan;Fang, Haiyan;Sun, Xinjie;Ma, Feng
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.44-49
    • /
    • 2020
  • Background: Salting-out extraction (SOE) had been developed as a special branch of aqueous two-phase system recently. So far as we know, few reports involved in extracting ginsenosides with SOE because of the lower recovery caused by the unique solubility and surface activity of ginsenosides. A new SOE method for rapid pretreatment of ginsenosides from the enzymatic hydrolysates of Panax quinquefolium was established in this article. Methods: The SOE system comprising ethanol and sodium carbonate was selected to extract ginsenosides from the enzymatic hydrolysates of Panax quinquefolium, and HPLC was applied to analyze the ginsenosides. Results: The optimized extraction conditions were as follows: the aqueous two-phase extraction system comprising ethanol, sodium carbonate, ethanol concentration of 41.51%, and the mass percent of sodium carbonate of 7.9% in the extraction system under the experimental condition. Extraction time had minor influence on extraction efficiency of ginsenosides. The results also showed that the extraction efficiencies of three ginsenosides were all more than 90.0% only in a single step. Conclusion: The proposed method had been successfully applied to determine ginsenosides in enzymatic hydrolysate and demonstrated as a powerful technique for separating and purifying ginsenosides in complex samples.

Differential Coupling of G$\alpha$q Family of G-protein to Muscarinic $M_1$ Receptor and Neurokinin-2-Receptor

  • Lee, Chang-Ho;Shin, In-Chul;Kang, Ju-Seop;Koh, Hyun-Chul;Ha, Ji-Hee;Min, Chul-Ki
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.423-428
    • /
    • 1998
  • The ligand binding signals to a wide variety of seven transmembrane cell surface receptors are transduced into intracellular signals through heterotrimeric G-proteins. Recently, there have been reports which show diverse coupling patterns of ligand-activated receptors to the members of Gq family $\alpha$ subunits. In order to shed some light on these complex signal processing networks, interactions between G$\alpha$q family of G protein and neurokinin-2 receptor as well as muscarinic M$_{1}$ receptor, which are considered to be new thearpeutic targets in asthma, were studied. Using washed membranes from Cos-7 cells co-transfected with different G.alpha.q and receptor cDNAs, the receptors were stimulated with various concentrations of carbachol and neurokinin A and the agonist-dependent release of [$^3H$]inositol phosphates through phospholipase C beta-1 activation was measured. Differential coupling of Gaq family of G-protein to muscarinic M$_{1}$ receptor and neurokinin-2 receptor was observed. The neurokinin-2 receptor shows a ligand-mediated response in membranes co-transfected with G$\alpha$q, G$\alpha$11 and G$\alpha$14 but not G$\alpha$16 and the ability of the muscarinic $M_1$ receptor to activate phospholipase C through G$\alpha$/11 but not G$\alpha$14 and G$\alpha$16 was demonstrated. Clearly G$\alpha$/11 can couple $\M_1$ and neurokinin-2 receptor to activate phospholipase C. But, there are differences in the relative coupling of the G$\alpha$14 and G$\alpha$16 subunits to these receptors.

  • PDF

Profile Measurements of Micro-aspheric Surfaces Using an Air-bearing Stylus with a Microprobe

  • Shibuya, Atsushi;Gao, Wei;Yoshikawa, Yasuo;Ju, Bing-Feng;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.26-31
    • /
    • 2007
  • A novel scanning probe measurement system was developed to enable precise profile measurements of microaspheric surfaces. An air-bearing stylus with a microprobe was used to perform the surface profile scanning. The new system worked in a contact mode and had the capability of measuring micro-aspheric surfaces with large tilt angles and complex profiles. Due to limitations resulting from the contact mode, such as possible damage caused by the contact force and lateral resolution restrictions from the curvature of the probe tip, several system improvements were implemented. An air bearing was used to suspend the shaft of the probe to reduce the contact force, enabling fine adjustments of the contact force by changing the air pressure. The movement of the shaft was measured by a linear encoder with a scale attached to the actual shaft to avoid Abbe errors. A $50-{\mu}m-diameter$ glass sphere was bonded to the tip of the probe to improve the lateral resolution of the system. The maximum contact force of the probe was 10 mN. The shaft was capable of holding the probe continuously if the contact force was less than 40 mN, and the resolution of the probe could be as high as 10 nm, The performance of the new scanning probe measurement system was verified by experimental data.

Conjugate Heat Transfer Analysis for High Pressure Cooled Turbine Vane in Aircraft Gas Turbine (항공기용 가스터빈의 고압 냉각터빈 노즐에 대한 복합열전달 해석)

  • Kim, Jinuk;Bak, Jeonggyu;Kang, Young-Seok;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.60-66
    • /
    • 2015
  • Conjugate heat transfer analysis was performed to investigate the flow and cooling performance of the high pressure turbine nozzle of gas turbine engine. The CHT code was verified by comparison between CFD results and experimental results of C3X vane. The combination of k-${\omega}$ based SST turbulence model and transition model was used to solve the flow and thermal field of the fluid zone and the material property of CMSX-4 was applied to the solid zone. The turbine nozzle has two internal cooling channels and each channel has a complex cooling configurations, such as the film cooling, jet impingement, pedestal and rib turbulator. The parabolic temperature profile was given to the inlet condition of the nozzle to simulate the combustor exit condition. The flow characteristics were analyzed by comparing with uncooled nozzle vane. The Mach number around the vane increased due to the increase of coolant mass flow flowed in the main flow passage. The maximum cooling effectiveness (91 %) at the vane surface is located in the middle of pressure side which is effected by the film cooling and the rib turbulrator. The region of the minimum cooling effectiveness (44.8 %) was positioned at the leading edge. And the results show that the TBC layer increases the average cooling effectiveness up to 18 %.

Shape, Volume Prediction Modeling and Identical Weights Cutting for Frozen Fishes (동결생선의 외형과 부피 예측 모델링 및 정중량 절단)

  • Hyun, Soo-Hwan;Lee, Sung-Choon;Kim, Kyung-Hwan;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.294-299
    • /
    • 2012
  • This paper suggests a modeling technique for shape and volume prediction of fishes to cut them with identical weights for group meals. The measurement and prediction of frozen fishes for group meals are very difficult because they have a bending deformation occurring at frozen stage and a hollow by eliminating the internals. Besides there exist twinkles problem of surface caused by freeze and variable weights by moisture conditions. Therefore a complex estimation algorithm is necessary to predict the shape and volume prediction of fishes exactly. Hollow prediction, pattern classification and modeling for tails using neural network, integration based volume prediction algorithm are suggested and combined to solve those problems. In order to validate the proposed method, the experiments of 3-dimensional measurement, volume prediction and fish cutting for spanish mackerel, saury, and mackerel are executed. The cutting experiments for real fish are executed.

An Fundamental Study on the Earth Wall Material Development by using of Lime Composition and Earth (석회복합체와 흙을 이용한 흙벽체 재료 개발에 관한 기초적 연구)

  • Hwang, Hey zoo;Kang, Nam Yi
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.115-121
    • /
    • 2010
  • Lime was the solidifier mostly used at the fields of construction and civil works in the past. however, the development of Portland cement remarkably reduced the use of it. Recently as the concernment on circumstances gets higher, lime wined attention again as an eco-friendly material and was used at earth-using construction. This study examined the physical and chemical capacity of lime complexes with lime capacity improved, and performed fundamental study on the way to concretize by mixing it with earth. As a result, lime complex pressure strength was lower than cement pressure strength but it showed the possibility that its strength was improved by W/B control. The measurement of XRD after paste formation confirmed a compound generated by the reaction of Ca2+ion and Si, Al, and Fe from pozzolan reaction. A earth wall experiment by using lime complexes and earth showed that the higher, WB or the lower the quantity of unit combined materials, the lower the pressure strength was. The maximum pressure strength was maximum 11MPa when the quantity of unit combined materials was 450. It is because the composed earth particles had a high content of micro powder less than silt, so a lot of combination are demanded to secure fluidity. As a result of peptization experiment, after hardening, the material was not dissolved, which informed of the possibility of use as an outer subsidiary material. If the material is hardened by mold formation method, natural hardening crack appears. Cast expresses smart surface quality and enables to design for multiple purpose. The result shows the possibility of construction of low-story structures by using earth wall made of lime complexes and earth.

Application of the Flowerbed Type Infiltration System for Low Impact Development - Focus on the Application to Eco-Village - (저부하형 개발을 위한 화단형 빗물침투시설 적용방안 - 생태전원마을에서의 적용을 중심으로 -)

  • Han, Young-Hae;Lee, Tae-Goo;Schuetze, T.
    • KIEAE Journal
    • /
    • v.12 no.3
    • /
    • pp.33-40
    • /
    • 2012
  • Since 2000 country region developmental policy has been to integrate not only the improvement of physical living environment but also various subjects on ecology, environment, scenery, local culture, and green tourism. This study has recently established a decentralized Rainwater Management plan in order to provide an hydrology cycle system to the eco-village being planned by Seocheon-gun as a part of the garden village development business promoted by the ministry of agriculture and forestry. Hydraulic conductivity of the subject area is measured at $10^{-7}{\sim}10^{-10}m/sec$, and a flowerbed-type rainwater Infiltration system capable of controlling a non-point pollution source that stems from the development-caused impermeable surface has been applied. In the case of rainwater flowing out from the main entrance way and parking lot within the complex being treated in the flowerbed-type rainwater infiltration system, natural purification effects via soil and plants as well as natural water cycling effects through evaportranspiration and infiltration are expected. The significance of this study, compared to conventional decentralized rainwater management being applied limited to the urban areas, is that it offers appropriate rainwater management planning based on the analysis of the current situation of the subject area. Decentralized Rainwater Management is a valuable measure both economically and ecologically that reduces the burdens on local underground water cultivation as well as rain water pipe lines or purification systems, and sewage pipes.

Doppler Frequency Estimation for Time-Varying Underwater Acoustic Communication Channel (시변 수중음향통신 채널을 위한 도플러 주파수 추정)

  • Hwang, Chan-Ho;Kim, Ki-Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.187-192
    • /
    • 2015
  • Underwater acoustic communication channels have very complex channel characteristics caused by time-varying sea surface, submarine topography, sound speed, and geometry between transmitter and receiver. Especially, the channel has time-variance and doppler effect due to wind and sea current. We have to recognize the channel state and apply it to communication technique for increasing transmission efficiency in the underwater acoustic channel. In this paper, we present the frame recursive modulation and demodulation method using ambiguity function and autocorrelation function to estimate the doppler frequency. Furthermore, we conducted the simulation and sea experiment to evaluate the performance of the proposed method. When the channel coding technique was not used, the bit error rate performance of the proposed method was improved about 32 % compared with conventional method.

Optimum Conditions for Extracting Flavanones from Grapefruit Peels and Encapsulation of Extracts (자몽껍질 유래 플라바논의 최적 추출 및 기능성 소재 캡슐화)

  • Ko, Min-Jung;Kwon, Hye-Lim;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.465-469
    • /
    • 2014
  • The extraction of flavanones such as naringin, narirutin, naringenin, hesperidin, and hesperetin from grapefruit peels was performed using subcritical water extraction (SWE), hot water extraction, and conventional methods such as methanol and ethanol extraction. We analyzed the total flavanone content using high-performance liquid chromatography (HPLC) for each extracting method. Among the three methods, SWE was the optimal method with optimal operating conditions of $170^{\circ}C$ temperature and 10 min operating time. The maximum total flavanone extracted was $86.539{\pm}3.52mg/g$ grapefruit peels. Moreover, we treated the extracts with 60% ${\beta}$-cyclodextrin and then analyzed the surface structure of the encapsulated compounds by field emission-scanning electron microscopy (FE-SEM). The results indicated that the encapsulation in ${\beta}$-cyclodextrin improved solubilization, and the inclusion complex could serve as food supplements.

Performance tests and uncertainty analysis of precipitation types (강수량계 종류별 성능시험 및 불확도 분석)

  • Hong, Sungtaek;Park, Byungdon;Kim, Jonglib;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.7
    • /
    • pp.935-942
    • /
    • 2018
  • Precipitation has a wide range of applications, such as the management and operation of dams and rivers, supply of dranking water for urban and industrial complex, farming and fishing, forest greening, and safety management. In order to prepare for disasters and to obtain economical effects in case of flood damage, it is necessary to measure accurate precipitation. In this study, we carried out the characteristics tests for various types of rainfall gauge using integrated verification system, which can analyze the performance of collective type rainfall gauge. The uncertainty for tipping bucket rain gauge was 0.0041 mm, where weight type and surface tension type was 0.0045 mm and 0.0039 mm respectively. Therefore, the uncertainty according to the type and characteristics of the precipitation system is not significantly different. The uncertainty is also influenced greatly by the resolution.