• Title/Summary/Keyword: Complex reaction model

Search Result 147, Processing Time 0.024 seconds

Separation and Concentration of L-Phenylalanine using a Supported Liquid Membrane

  • Jeong Woo Choi;Kyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.1
    • /
    • pp.24-31
    • /
    • 1998
  • The separation and concentration of L-phenylalanine (L-Phe) using a supported liquid membrane (SLM) is investigated. A cation complex agent, di-2-ethylhexyl phosphoric acid (D2EHPA), is used as a carrier in the SLM with n-Heptane as a solvent. The reaction order and equilibrium constant in the formation reaction of L-phe-carrier complex are obtained from the extraction experiment. A mathematical model for a carrier mediated counter transport process is proposed to estimate the diffusion coefficient of L-phe-carrier complexly in the liquid membrant. Permeation experiments of L-phe using a SLM are performed under various operating conditions and optimum conditions for the transport of L-phe are obtained. Concentration of L-phe in the strip phase against its concentration is observed. Transport rate of glucose through liquid membrane is less than that of L-phe in the competitive transport of L-phe and glucose. And the existence of glucose reduced the transport rate of L-phe. The performance of separation with continuous strip phase is increased due to the dilution effect in the strip phase.

  • PDF

The Study on the Mechanism for Oxidation Reaction of Boratabenzene by Cyclic Voltammetry (Cyclic Voltammetry를 이용한 Boratabenzene의 산화반응 Mechanism 연구)

  • Shin, Ueon-Sang
    • Analytical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.550-555
    • /
    • 2002
  • The oxidation mechanism of boratabenzene was studied. As a model compound the ferrocene analogue (${\eta}^6$-1-Methylboratabenzene)(${\eta}^5$-Pentamethylcyclopentadiennyl)iron 3 was chosen. The complex underwent irreversible oxidation in the presence of ortho proton on the ring and a methyl group on the boron atom in methanol medium. Chemical oxidations with $Hg(OAc)_2$, $HgSO_4$, $Cu(OH)_2$, $AgCF_3SO_3$ or $FeCl_3$ in MeOH gave, via a transition state [3], at first the derivates 6 and 7, which were converted to each 8 and 9.

Application of ASM and PHOENICS for Optimal Operation of Wastewater Treatment Plant (하수처리장 운영의 최적화를 위한 ASM, PHOENICS의 적용)

  • Kim, Joon Hyun;Han, Mi-Duck;Han, Yung Han
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.73-82
    • /
    • 2000
  • This study was implemented to find an optimal model for wastewater treatment processes using PHOENICS(Parabolic, hyperbolic or Elliptic Numerical Integration Code Series) and ASM(Activated Sludge Model). PHOENICS is a general software based upon the laws of physics and chemistry which govern the motion of fluids, the stresses and strains in solids, heat flow, diffusion, and chemical reaction. The wastewater flow and removal efficiency of particle in two phase system of a grit chamber in wastewater treatment plant were analyzed to inquire the predictive aspect of the operational model. ASM was developed for a biokinetic model based upon material balance in complex activated sludge systems, which can demonstrate dynamic and spatial behavior of biological treatment system. This model was applied to aeration tank and settling chamber in Choonchun city, and the modeling result shows dynamic transport in aeration tank. PHOENCS and ASM could be contributed for the optimal operation of wastewater treatment plant.

  • PDF

Control of a Unicycle Robot using a Non-model based Controller (비 모델 외바퀴 로봇의 제어)

  • An, Jae-Won;Kim, Min-Gyu;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.537-542
    • /
    • 2014
  • This paper proposes a control system to keep the balance of a unicycle robot. The robot consists of the disk and wheel, for balancing and driving respectively, and the tile angle is measured and used for balancing by the IMU sensor. A PID controller is designed based on a non-model based algorithm to prove that it is possible to control the unicycle robot without any approximated linear system model such as the sliding mode control algorithm. The PID controller has the advantage that it is simple to design the controller and it does not require an unnecessary complex formula. In this paper, assuming that the pitch and roll axis are dynamically decoupled, each of the two controllers are designed separately. A reaction wheel pendulum method is used for the control of the roll axis, that is, for balancing and an inverted pendulum concept is used for the control of the pitch axis. To confirm the performance of the proposed controllers using MATLAB Simulink, the dynamic equations of the robot are derived.

Correlation between rare earth elements in the chemical interactions of HT9 cladding

  • Lee, Eun Byul;Lee, Byoung Oon;Shim, Woo-Yong;Kim, Jun Hwan
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.915-922
    • /
    • 2018
  • Metallic fuel has been considered for sodium-cooled fast reactors because it can maximize the uranium resources. It generates rare earth elements as fission products, where it is reported by aggravating the fuel-cladding chemical interaction at the operating temperature. Rare earth elements form a multicomponent alloy (Ce-Nd-Pr-La-Sm-etc.) during reactor operation, where it shows a higher reaction thickness than a single element. Experiments have been carried out by simplifying multicomponent alloys for mono or binary systems because complex alloys have difficulty in the analysis. In previous experiments, xCe-yNd was fabricated with two elements, Ce and Nd, which have a major effect on the fuel-cladding chemical interaction, and the thickness of the reaction layer reached maximum when the rare earth elements ratio was 1:1. The objective of this study is to evaluate the effect and relationship of rare earth elements on such synergistic behavior. Single and binary rare earth model alloys were prepared by selecting five rare earth elements (Ce, Nd, Pr, La, and Sm). In the single system, Nd and Pr behaviors were close to diffusion, and Ce showed a eutectic reaction. In the binary system, Ce and Sm further increased the reaction layer, and La showed a non-synergy effect.

Design of the secondary tunnel lining using a ground-primary support-secondary lining interaction model

  • Chang, Seok-Bue;Seo, Seong-Ho;Lee, Sang-Duk
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.109-114
    • /
    • 2003
  • It is the common practice to reinforce excessively the secondary tunnel lining due to the lack of rational insights into the ground loosening loads. The main load of the secondary lining for drained-type tunnels is the ground loosening. The main cause of the load for secondary tunnel lining is the deterioration of the primary support members such as shotcrete, steel ribs, and rockbolts. Accordingly, the development of the analysis model to consider the ground-primary supports-secondary lining interaction is very important for the rational design of the secondary tunnel lining. In this paper, the interaction is conceptually described by the simple mass-spring model and the load transfer from the primary supports to the ground and the secondary lining is showed by the characteristic curves including the secondary lining reaction curve for the theoretical solution of a circular tunnel. And also, the application of this model to numerical analysis is verified in order to review the potential tool for practical tunnel problems with the complex conditions like non-circular shaped tunnels, multi-layered ground, sequential excavation and so on.

  • PDF

Dynamic Walking Analysis for Biped Robot (이족 로봇을 위한 동적 보행 해석)

  • Park, In-Gyu;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2804-2807
    • /
    • 2000
  • This paper suggests a method of the forward dynamic analysis for the computer simulation on the analysis of the dynamic behavior for biped walking robot. The equations f motion of the system or the simulation are constructed by using the Method of the multibody dynamics which is powerful method for modeling of the complex biped system. For the simplicity of simulation, we consider that the sole of the contacting foot is affected by the reaction forces for tree structure system topology instead of the addition or deletion of the kinematic constraints. The ground reaction forces can be modeled using the simple spring and damper model at the three contacting points on the sole of the foot. For minimizing the errors of numerical integration, the number of equations of motion is minimized by adding the driving constraints or a controller instead of the direct driving torques.

  • PDF

A New Topology of Solutions of Chemical Equations

  • Risteski, Ice B.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.2
    • /
    • pp.176-203
    • /
    • 2013
  • In this work is induced a new topology of solutions of chemical equations by virtue of point-set topology in an abstract stoichiometrical space. Subgenerators of this topology are the coefficients of chemical reaction. Complex chemical reactions, as those of direct reduction of hematite with a carbon, often exhibit distinct properties which can be interpreted as higher level mathematical structures. Here we used a mathematical model that exploits the stoichiometric structure, which can be seen as a topology too, to derive an algebraic picture of chemical equations. This abstract expression suggests exploring the chemical meaning of topological concept. Topological models at different levels of realism can be used to generate a large number of reaction modifications, with a particular aim to determine their general properties. The more abstract the theory is, the stronger the cognitive power is.

Theoretical Studies on the Photo-Skinsensitizing Psoralens (II)

  • Kim, Ja-Hong;Shim, Sang-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.3
    • /
    • pp.112-114
    • /
    • 1981
  • The photocycloaddition reaction of 8-methoxypsoralen with purine and/or pyrimidine bases is studied as a model for the charge transfer interactions of psoralens with DNA bases by the FMO method. The results indicate that, in the case of the molecular complex formation between psoralens and purine and/or pyrimidine bases, the most probable photocycloaddition should occur in the following order: Thy (5,6)<>(3,4) 8-MOP, Cyt(5,6)<>(3,4)8-MOP, Ade (7,8)<>(3,4)8-MOP, Gua(7,8)<>(3,4)8-MOP. The theoretical results for the photocycloaddition reaction are also correlated with the experimental results. The photoadducts between 8-methoxypsoralen and adenine are likely to be C4-cycloadducts through the cycloaddition of 3,4-pyrone double bond of 8-methoxypsoralen to 7,8-double bond of adenine.

A Theoretical Study on the Alkylation of the Ambident Enolate from a Methyl Glycinate Schiff Base

  • Nahm, Kee-Pyung;Lee, Seung-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2711-2718
    • /
    • 2012
  • The alkylation of the ambident enolates of a methyl glycinate Schiff base with ethyl chloride was studied at B3LYP and MP2 levels with $6-31+G^*$ basis set. The free (E)-enolates and (Z)-enolate are similar in energy and geometry. The transition states for the alkylation of the free (E)/(Z)-enolate with ethyl chloride have similar energy barriers of ~13 kcal/mol. However, with a lithium ion, the (E)-enolate behaves as an ambident enolate and makes a cyclic lithium-complex in bidentate pattern which is more stable by 11-23 kcal/mol than the (Z)-enolate-lithium complexes. And the TS for the alkylation of (E)-enolate-lithium complex coordinated with one methyl ether is lower in energy than those from (Z)-enolate-lithium complexes by 4.3-7.3 kcal/mol. Further solvation model (SCRF-CPCM) and reaction coordinate (IRC) were studied. This theoretical study suggests that the alkylation of ambident enolates proceeds with stable cyclic bidentate complexes in the presence of metal ion and solvent.