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ABSTRACT. In this work is induced a new topology of solutions of chemical equations by virtue of point-set topology in an

abstract stoichiometrical space. Subgenerators of this topology are the coefficients of chemical reaction. Complex chemical

reactions, as those of direct reduction of hematite with a carbon, often exhibit distinct properties which can be interpreted as

higher level mathematical structures. Here we used a mathematical model that exploits the stoichiometric structure, which can

be seen as a topology too, to derive an algebraic picture of chemical equations. This abstract expression suggests exploring the

chemical meaning of topological concept. Topological models at different levels of realism can be used to generate a large

number of reaction modifications, with a particular aim to determine their general properties. The more abstract the theory is,

the stronger the cognitive power is.
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INTRODUCTION

In this work for the first time in scientific literature is

induced a topology of solutions of chemical equations.

This topology is developed by virtue of a new algebraic

analysis of subgenerators of coefficients of chemical reac-

tion and theory of point-set topology.1,2

Why did we do it? Simply speaking, it was necessary

because the theory of balancing chemical equations worked

only on determination of coefficients of reactions, with-

out taking into account interactions among them. Was it

correct? No! It was an artificial approach, which was used

by chemists, only in order to determine quantification

relations among reaction molecules and nothing more. 

That so-called traditional approach with a minor sci-

entific meaning, did not provide complete information for

reaction character, just it represented only a rough reac-

tion quantitative picture. Chemists by that approach, or

more accurately speaking so-called chemical techniques

balanced only very simple chemical equations. Their pro-

cedures were inconsistent and produced illogical results.

The author of this work refuted all of them in his previous

comprehensive work.3

We open this algebraic analysis by examining three

senses which the word topology has in our discourse.

• The first sense is that proposed when we say that topol-

ogy is the constructive theory of relations among sets. We

notice that we draw constructive conclusions from our

topological data. Progressively we become aware that con-

structive topological calculations conducted according to

certain norms can be depended on if the data are correct.

The study of these norms, or principles has always been

considered as a branch of applied topology. In order to dis-

tinguish topology of this sense from other senses intro-

duced later, we shall call it applied topology.

• In the study of applied topology it has been found pro-

ductive to use mathematical methods, i.e., to construct

mathematical systems having some connection therewith.

What such a system is, and the nature of the connections,

are questions which we shall consider later. The systems

so formed are obviously a proper subject for study in them-

selves, and it is usual to apply the term topology to such a

study. Topology in this sense is a branch of mathematics.

To distinguish it from other senses, it will be called math-

ematical topology.

• In both of its preceding senses, topology was used as a

proper name. The word is also frequently used as a com-

mon noun, and this usage is a third sense of the word distinct

from the first two. In this sense a topology is a system, or

theory, such as one considers in mathematical or applied

topology. Thus we may have algebraic topology, geomet-

ric topology, differential topology, etc.

This is as far as it is desirable to go, at present, in defin-

ing mathematical topology. As a matter of reality, it is

ineffective to try to define any branch of science by delim-

iting accurately its boundaries; rather, one states the essen-

tial idea or purpose of the subject and leaves the boundaries

to fall where they can. It is a benefit that the definition of
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topology is broad enough to admit different shades of

opinion. Also, it will be allowable to speak of topological

systems, topological algebras, without giving an accurate

criterion for deciding whether a given system is such. 

There are, however, several remarks which it is suitable

to make now to intensify and illuminate the above dis-

cussion.

In the first place, we can and do consider topologies as

formal structures, whose interest from the standpoint of

applied topology may lie in some formal analogy with

other systems which are more directly applicable.

In the second place, although the distinction between

the different senses of topology has been stressed here as a

means of clarifying our thinking, it would be a mistake to

suppose that applied and mathematical topology are com-

pletely separate subjects. In fact, there is a unity between

them. Mathematical topology, as has been said, is produc-

tive as a means of studying applied topology. Any sharp

line between the two aspects would be arbitrary.

Finally, mathematical topology has a regular relation to

the rest of mathematics. For mathematics is a deductive

science, at least in the sense that a concept of exact proof is

fundamental to all part of it. The question of what con-

stitutes an exact proof is a topological question in the

sense of the preceding discussion. The question therefore

falls within the area of topology; since it is relevant to

mathematics, it is expedient to consider it in mathemat-

ical topology. Thus, the task of explaining the nature of

mathematical strictness falls to mathematical topology,

and indeed may be regarded as its most essential problem.

We understand this task as including the explanation of

mathematical truth and the nature of mathematics gener-

ally. We express this by saying that mathematical topol-

ogy includes the study of the foundation of chemistry, as

that of abstract balancing chemical equations.

The part of topology which is selected for treatment

may be described as the constructive theory of point-set

topological calculus. That this topological calculus is cen-

tral in modern topology does not need to be argued. Also,

the constructive aspects of this topological calculus are

fundamental for its higher study. Moreover, it is becom-

ing more and more obvious that mathematicians in gen-

eral need to be conscious of the difference between the

constructive and nonconstructive, and there is hardly any

better manner of increasing this consciousness than by

giving a separate treatment of the former.

The conventional approach to the topological calculus

is that it is a formal system like any other; it is unusual

only in that it must be formalized more strictly, since we

cannot take topology for granted, and in that it can be

explained in the statements of usual discussion. Here the

point of view is taken that we can explain our systems in

the more restricted set of statements which we form in

dealing with some other (unspecified) formal system.

Since in the study of a formal system we can form asser-

tions which can not be decided by the expedients of that

system, this brings in possibilities which did not arise, or

seemed merely pathological, in the conventional theories.

It is an explanation for the word topology used in our

discourse.

PRELIMINARIES

How are things right now in the theory of balancing

chemical equations? We shall try to give a comprehensive

reply to this question from the view point of chemistry as

well as mathematics.

There are two approaches, competing with each other,

for balancing chemical equations: chemical and mathe-

matical.

1o First, we shall explain the chemical approach for bal-

ancing chemical equations.

In chemistry, there are lots of particular procedures for

balancing chemical equations, but unfortunately all of

them are inconsistent. In order to avoid reference repeti-

tion, we intentionally neglected to mention chemical ref-

erences here, because a broad list with them is given in.4,5

These informal procedures were founded by virtue of so-

called traditional chemical principles and experience, but

not on genuine principles. Since, these principles were not

formalized, they very often generated wrong results. It

was a main cause for the appearance of a great number of

paradoxes in theory of balancing chemical equations.

These paradoxes were discovered and analyzed in detail

in.3 Furthermore, it is true that from the beginning of

chemistry to date chemists did not develop their own gen-

eral consistent method for balancing chemical equations.

Why? Probably they must ask themselves!

2o Next we shall explain the mathematical approach for

balancing chemical equations.

Simply speaking, that which chemists did not do, math-

ematicians did.

The earliest reference with a mathematical method (fre-

quently referred to as the algebraic method or the method

of undetermined coefficients) of balancing chemical equa-

tions is that of Bottomley6 published in 1878. A textbook

written by Barker7 in 1891 has devoted some space to this

topic too. Unfortunately, the method proposed by Bot-
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tomley, more than fifty years, was out of usage, because it

and his author both were forgotten. Endslow8 illustrated

this method again in 1931. It is not surprising, therefore,

that even today the method is not broadly familiar to chem-

istry teachers.

The next very important step which mathematicians

made is the transfer of problem of balancing of chemical

equations from the field of chemistry to the field of math-

ematics. Jones9 by virtue of the Crocker’s article10 in 1971

proposed the general problem of balancing chemical

equations. He formalized the century old problem in a

compact linear operator form as a Diophantine matrix

equation. Actually it is the first formalized approach in

theory of balancing chemical equations.

The Jones’ problem waited for its solution only thirty-

six years. In 2007, the author of this article by using a

reflexive g-inverse matrix gave an elegant solution4 of this

problem, which generalized all known results in chem-

istry and mathematics.

Krishnamurthy11 in 1978 gave a mathematical method

for balancing chemical equations founded by virtue of a

generalized matrix inverse. He considered some elementary

chemical equations, which were well-known in chemistry

for a long time.

Das12 in 1986 offered a method of partial equations for

balancing chemical equations. He described his method

by elementary examples.

In 1989 Yde13 criticized the half reaction method and

proved that half equations can not be defined mathemat-

ically, so that they correspond exactly to the chemists’

idea of half reaction. He wrote: The half reaction method

of balancing chemical equations has severe disadvan-

tages compared to alternative methods. It is difficult to define

a half reaction exactly, and thus to define a corresponding

mathematical concept. Furthermore, existence and unique-

ness proofs of the solutions (balanced chemical equations)

require advanced mathematics. It shows that balancing

chemical equations is not a piece of cake as some chem-

ists think or as they like it to be. Yde by this article

announced the need for the formalization of chemistry.

Baby is on the way, but is not born!

Also, Yde in his article14 offered a mathematical inter-

pretation of the gain-loss rule. He wrote: It does not look

elegant! Neither does the proof of it! But there is hardly

anything we can do about this, if we demand a full math-

ematical presentation. In fact, the point is that ‘it is com-

plicated’. Actually, he made a modern version of Johnson’s

derivation of the oxidation number method.15

Subramaniam, Goh and Chia in16 showed that a chem-

ical equation is equivalent to a class of linear Diophantine

equations.

A new general nonsingular matrix method for balanc-

ing chemical equations is developed in.17 It is a formalized

method, which include stability criteria for the general

chemical equation.

The most general results for balancing chemical equa-

tions by using the Moore-Penrose pseudoinverse matrix18,19

are obtained in.5 Also, this method is formalized method,

which belongs to the class of consistent methods.

In20 is developed a completely new generalized matrix

inverse method for balancing chemical equations. The

offered method is founded by virtue of the solution of a

homogeneous matrix equation by using von Neumann

pseudoinverse matrix.21−23 The method has been tested on

many typical chemical equations and found to be very

successful for all equations. Chemical equations treated

by this method possessed atoms with fractional oxidation

numbers. Furthermore, in this work are analyzed some

necessary and sufficient criteria for stability of chemical

equations over stability of their reaction matrices. By this

method is given a formal way for balancing general chem-

ical equation with a matrix analysis.

Other new singular matrix method for balancing chem-

ical equations which reduce them to an n×n matrix form is

obtained in.24 This method is founded by virtue of the

solution of a homogeneous matrix equation by using

Drazin pseudoinverse matrix.25

The newest mathematical method for balancing chem-

ical equations is proved in.26 This method is founded by

virtue of the theory of n-dimensional complex vector spaces.

Such looks the picture for balancing chemical equa-

tions that mathematicians painted.

We would like to emphasize here that all of the previ-

ously mentioned contemporary matrix methods4,5,17,20,24,26

are rigorously formalized and consistent. Only such for-

malized methods are not contradictory and work success-

fully without any limitations. All other techniques or

procedures known in chemistry have a limited usage and

hold only for balancing simple chemical equations and

nothing more. Most of them are inconsistent and produce

only paradoxes.

Into a mathematical model must be introduced a whole

set of auxiliary definitions to make the chemistry work

consistently. Just this kind of set will be constructed in the

next section.

Only on this way chemistry will be consistent and resis-

tant to paradoxes appearance.
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A NEW CHEMICAL FORMAL SYSTEM

In this section we shall develop a new chemical formal

system founded by virtue of principles of a point-set

topology.

Let k is a finite set of molecules.

Definition 2.1. A chemical reaction on k is a pair of

formal linear combinations of elements of k, such that

(2.1)

with aij, bij ≥ 0.

The coefficients xj, yj satisfy three basic principles (cor-

responding to a closed input-output static model)

• the law of conservation of atoms,

• the law of conservation of mass, and

• the reaction time-independence. 

What does it mean a chemical equation? The reply of

this question lies in the following descriptive definition

given in a compact form.

Definition 2.2. Chemical equation is a numerical quan-

tification of a chemical reaction. 

In5 is proved the following proposition.

Proposition 2.3. Any chemical equation may be pre-

sented in this algebraic form

, (2.2)

where xj, (1≤ j≤n) are unknown rational coefficients, Ψiaij

and Ψibij, (1≤i≤m) are chemical elements in reactants and

products, respectively, aij and bij, (1≤i≤m; 1≤ j≤n; m<n)

are numbers of atoms of elements Ψiaij and Ψibij, respec-

tively, in j-th molecule.

Definition 2.4. Each chemical reaction ρ has a domain

Domρ = {x ∈k | aij > 0}. (2.3)

Definition 2.5. Each chemical reaction ρ has an image

Imρ = {y ∈k | bij > 0}. (2.4)

Definition 2.6. Chemical reaction ρ is generated for

some x∈k, if both aij > 0 and bij > 0.

Definition 2.7. For the case as the previous definition,

we say x is a generator of ρ. 

Definition 2.8. The set of generators of ρ is thus Domρ

∩ Imρ.

Often chemical reactions are modeled like pairs of mul-

tisets, corresponding to integer stoichiometric constants.

Definition 2.9. A stoichiometrical space is a pair (k,

e ), where e is a set of chemical reactions on k. It may

be symbolized by an arc-weighted bipartite directed graph

Γ(k, e ) with vertex set k ∪e, arcs x→ρ with weight

aij if aij > 0, and arcs ρ→y with weight bij if bij > 0. 

Let us now consider an arbitrary subset T ⊆k.

Definition 2.10. A chemical reaction ρ may take place

in a reaction combination composed of the molecules in

T  if and only if Domρ ⊆T. 

Definition 2.11. The collection of all possible reactions

in the stoichiometrical space (k, e ), that can start from

T  is given by

eT ={ρ∈e | Domρ ⊆ T }. (2.5)

Definition 2.12. Subgenerators of the chemical reac-

tion (2.1) are the coefficient of its general solution 

xi = di1xk1 + di2xk2 + ... + di,n–rxk,n–r, (1≤i≤r),  (2.6)

where xk1, xk2, …, xk,n–r, (n>r) are free variables.

Definition 2.13. For any subgenerator holds

xj > 0, (1≤ j≤r).  (2.7)

Definition 2.14. A sequence of vectors {x1, x2, …, xk} is

a basis of the chemical reaction (2. 1) if the vectors of

solutions xi, (1≤i≤k) of (2. 2) are linearly independent and

xi, (1≤i≤k) generate the vector space W of the solutions xi,

(1≤i≤k). 

Definition 2.15. The vector space W of the vectors of

solutions xi, (1≤i≤k) of (2. 2) is said to be of finite dimen-

sion k, written dim W = k, if W contains a basis with k ele-

ments.

Definition 2.16. If W is a subspace of V, then the

orthogonal complement W⊥ of (2.2) is 

W⊥ = {x∈V |〈x, y〉 = 0, ∀y∈W}. (2.8)

Definition 2.17. The set X⊂R is a set of all the coef-

ficients xj, (1≤ j≤n) of the chemical equation (2.2) of the

reaction (2.1).

Definition 2.18. Cardinality of the set X = {x1, x2, …,

xn} of the coefficients of the chemical equation (2.2) of the

reaction (2.1) is

CardX = |X| = n.

Definition 2.19. If X⊂R is a set of the coefficients xj, (1

≤ j≤n) of the chemical equation (2.2) of the reaction (2.1),

then the power set of X, denoted by c  (X), is the set of all

subsets of X.

Definition 2.20. Cardinality of the power set c (X) of

the set X = {x1, x2, …, xn} of the coefficients of the chem-

ical equation (2.2) of the reaction (2.1) is

Cardc (X) = 2|X| = 2n.

Definition 2.21. The set X ⊂ R of the coefficients xj, (1≤

ρ: aij

j 1=

r

∑ xj bij

j 1=

s

∑ yj 1 i m≤ ≤( ),→

xj

j 1=

s

∑ Ψ
i

i 1=

m

∏ aij xj

j s 1+=

n

∑ Ψ
i

i 1=

m

∏ bij=
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j≤n) of the chemical equation (2.2) of the reaction (2.1), is

open, if it is a member of the topology. 

Definition 2.22. The set X ⊂ R of the coefficients xj, (1≤

j≤n) of the chemical equation (2.2) of the reaction (2.1), is

called closed, if the complement R\ X of X is an open set. 

Definition 2.23. The interior of X is the union of all

open sets contained in X,

Int{X} = ∪ {Y ⊂ X | Y open} = Xo.

Definition 2.24. The exterior of X is the interior of the

complement of X,

Ext{X} = Int{Xc}.

Definition 2.25. The closure of X is the intersection of

all closed sets containing X,

Cl{X} = ∩ {Y ⊃ X | Y closed} = X−.

Definition 2.26. The boundary of X is 

∂X = Cl{X} – Int{X} = X − – Xo = Bd{X}.

Definition 2.27. A point x ∈ X is called isolated point of X

if there exists a neighborhood Y of x such that Y ∩ X = {x}.

Definition 2.28. A point x ∈ X is called accumulation

point or limit point of a subset A of X if and only if every

open set Y containing x contains a point of A different from x, i.e.

Y open, x ∈ Y ⇒ {Y \ {x}} ∩ A ≠ ∅.

Definition 2.29. The set of accumulation points of X,

denoted by X’, is called the derived set of X. 

Definition 2.30. A class g of subsets of X, whose ele-

ments are referred as the open sets, is called topology of

the chemical equation (2.2) of the reaction (2.1) if the fol-

lowing axioms are satisfied

1o ∅, X ∈g , where ∅ is an empty set,

2o if {Xi | i ∈ I} ⊂ g , then ∪i∈I Xi ∈ g ,

3o if Xi, Xj ∈ g , then Xi ∩ Xj ∈ g . 

The pair (X, g ) is called a topological space of solu-

tions of the chemical equation (2.2) of the reaction (2.1).

Definition 2.31. A subset Y of the topological space (X,

g  ), of solutions of the chemical equation (2.2) of the reac-

tion (2.1), is said to be dense in Z ⊂ (X, g  ) if Z is con-

tained in the closure of Y, i.e., B ⊂ Cl{X}.

Definition 2.32. Let x be point in the topological space

(X, g  ), of solutions of the chemical equation (2.2) of the

reaction (2.1). A subset a  of (X, g  ) is a neighborhood of x

if and only if a is a superset of an open set Y containing x, i.e.,

x ∈ Y ⊂ a , Y open.

Definition 2.33. The class of all neighborhoods of x ∈

(X, g  ), denoted by a p, is called the neighborhood system

of x. 

Definition 2.34. Let Y be a non-empty subset of a topo-

logical space (X, g  ). The class g  Y of all intersections of Y

with g  -open subsets of X is a topology on Y; it is called the

relative topology on Y or the relativization of g  to Y, and

the topological space (Y, g  Y) is called a subspace of (X, g  ).

Definition 2.35. The discrete topology of the chemical

equation (2.2) of the reaction (2.1) is the topology W = c

(X) on X, where c (X) denotes the power set of X. The

pair (X, W ) is called a discrete topological space of the

chemical equation (2.2) of the reaction (2.1).

Definition 2.36. The indiscrete topology of the chem-

ical equation (2.2) of the reaction (2.1) is the topology \ =

{∅, X}. The pair (X, \ ) is called an indiscrete topological

space of the chemical equation (2.2) of the reaction (2.1).

Definition 2.37. The n-th complete Bell polynomial27 is

defined by

Yn( fx1, fx2, …, fxn) = [n! fr/(r1! r2! ... rn!)] 

× (x1/1!)r1 (x2/2!)r2... (xn/n!)rn, (2.9)

where f r ≡ fr = (–1)r−1(r – 1)! and the summation is over all

non negative integers satisfying the following conditions

r1 + 2r2 + ... + nrn = n, 

r1 + r2 + ... + rn = r, (2.10)

where ri, (1≤i≤n) are the numbers of parts of size i.

Definition 2.38. Let Yn (x1, x2, …, xn) denote the Bell

polynomial with all fi set at unity. This particular Bell

polynomial can be interpreted as an ordered-cycle indicator.

Definition 2.39. Let d (n) be the number of quasi-orders

on the set X = {x1, x2, …, xn} of the coefficients of the

chemical equation (2.2) of the reaction (2.1).

Definition 2.40. Let d c(n) be the number of connected

quasi-orders on the set X = {x1, x2, …, xn} of the coeffi-

cients of the chemical equation (2.2) of the reaction (2.1).

Definition 2.41. Let c (n) be the number of partial

orders on the set X = {x1, x2, …, xn} of the coefficients of

the chemical equation (2.2) of the reaction (2.1).

Definition 2.42. Let c c(n) be the number of connected

partial orders on the set X = {x1, x2, …, xn} of the coef-

ficients of the chemical equation (2.2) of the reaction (2.1).

Definition 2.43. Let g (X) be the set of all topologies

that can be defined on the set X = {x1, x2, …, xn} of the coef-

ficients of the chemical equation (2.2) of the reaction (2.1).

Definition 2.44. Let g c(X) be the set of all connected

topologies that can be defined on the set X = {x1, x2, …,

xn} of the coefficients of the chemical equation (2.2) of the

reaction (2.1).

Definition 2.45. Let g 0(X) be the set of all g 0-topol-

ogies that can be defined on the set X = {x1, x2, …, xn} of

the coefficients of the chemical equation (2.2) of the reac-

tion (2.1).

Definition 2.46. Let g 0
c(X) be the set of all connected

 ∑
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g 0-topologies that can be defined on the set X = {x1, x2, …,

xn} of the coefficients of the chemical equation (2.2) of the

reaction (2.1).

Definition 2.47. Let g (n) = |g (X)|, g c(n) = |g c(X)|,

g 0(n) = |g 0(X)| and g 0
c(n) = |g 0 

c(X)|.

MAIN RESULTS

In this section we shall present our newest research

results.

Theorem 3.1. Echelon form of the chemical equation

(2.2) of the reaction (2.1) has one solution for each spec-

ification of n – r free variables if r < n.

Proof. According to the Theorem 4.2 from5 the chem-

ical reaction (2.1) reduces to (2.2), i.e., this system of lin-

ear equations

a11x1 + a12x2 + ... + a1sxs = b1,s+1xs+1

+ b1,s+2xs+2 + ... + b1nxn,

a21x1 + a22x2 + ... + a2sxs = b2,s+1xs+1

+ b2,s+2xs+2 + ... + b2nxn,  

                      

am1x1 + am2x2 + ... + amsxs = bm,s+1xs+1

+ bm,s+2xs+2 + ... + bmnxn, (3.1)

The echelon form of the system (3.1) is

a11x1 + a12x2 + a13x3 + ... + a1nxn = 0,

a2j2xj2 + a2,j2+1xj2+1 + ... + a2nxn = 0,

                        

arjrxjr + ar,jr+1xjr+1 + ... + arnxn = 0, (3.2)

where 1 < j2 < ... < jr and a11 ≠ 0, a2j2 ≠ 0, …, arjr ≠ 0, r < n.

If we use mathematical induction for r = 1, then we have

a single, nondegenerate, linear equation to which (3.2)

applies when n > r = 1. Thus the theorem holds for r = 1.

Now, suppose that r > 1 and that the theorem is true for a

system of r – 1 equations. We shall consider the r – 1 equa-

tions.

a2j2xj2 + a2,j2+1xj2+1 + ... + a2nxn = 0,

                       

arjrxjr + ar,jr+1xjr+1 + ... + arnxn = 0, (3.3)

as a system in the unknowns xj2, …, xn. Note that the sys-

tem (3.3) is in echelon form. By the induction hypothesis,

we may arbitrary assign values to the (n – j2 + 1) – (r – 1)

free variables in the reduced system to obtain a solution

xj2, …, xn. As in case r = 1, these values and arbitrary val-

ues for the additional  j2 – 2 free variables x2, …, xj2–1, yield

a solution of the first equation with

x1 = (– a12x2 – ... – a1nxj2–1)/a11. (3.4)

Note that there are (n – j2 + 1) – (r – 1) + ( j2 – 2) = n – r

free variables.

Furthermore, these values for x1, …, xn also satisfy the

other equations since, in these equations, the coefficients

x1, …, xj2–1 are zero.

Theorem 3.2. Let echelon form of the chemical equa-

tion (2.2) of the reaction (2.1) has v free variables. Let xi,

(1≤i≤v) be the solutions obtained by setting one of the free

variables equal to one (or any nonzero constant) and the

remaining free variables equal to zero. Then the solutions

xi, (1≤i≤v) form a basis for solution space W of the chem-

ical equation (2.2) of the reaction (2.1).

Proof. This means that any solution of the system (3.2)

can be expressed as a unique linear combination of xi, (1≤

i≤v). Thus, the dimension of W is dimW = v.

Theorem 3.3. Let chemical equation (2.2) of the reac-

tion (2.1) is in echelon form (3.2). The basis of solution

space W of chemical equation (2.2) of the reaction (2.1)

are the solutions xi, (1≤i≤n – r), such that dim W = n – r.

Proof. The system (3.2) has n – r free variables xi1, xi2, …,

xi,n–r. The solution xj is obtained by setting xij = 1 (or any

nonzero constant) and the remaining free variables are

equal to zero. Then the solutions xi, (1≤i≤n – r) form a

basis of W and so dimW = n – r. 

Theorem 3.4. Let xi1, xi2, …, xir, be the free variables of

the homogeneous system (3.2) of the chemical equation

(2.2) of the reaction (2.1). Let xj be the solution for which

xij = 1 and all other free variables are equal to zero. Solu-

tions xi, (1 ≤ i ≤ r) are linearly independent.

Proof. Let A be the matrix whose rows are the xi, respec-

tively. We interchange column 1 and column i1, then the

column 2 and column i2, …, and then column r and col-

umn ir, and obtain r×n matrix

The above matrix B is in echelon form and so its rows

are independent, hence rankB = r. Since A and B are col-

umn equivalent, they have the same rank, i.e., rankA = r.

But A has r rows, hence these rows, i.e., the xi are linearly

independent as claimed.

Theorem 3.5. The dimension of the solution space W of

the chemical equation (2.2) of the reaction (2.1) is n – r,

where n is the number of molecules and r is the rank of the

reaction matrix A.

…

…

…
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Proof. If we take into account that 

r = rankA = dim(ImA)

and

n = dimR
n = dim(DomA),

then immediately follows

dimW = dim(KerA) = dim(DomA) – dim(ImA) = n – r.

Corollary 3.6. If n = r, then dimW = 0, that means reac-

tion (2.1) is impossible.

Corollary 3.7. If n = r + 1, then dimW = r + 1 – r = 1,

that means that chemical equation (2.2) of the reaction

(2.1) has a unique set of coefficients.

Corollary 3.8. If n > r + 1, then dimW > r + 1 – r > 1,

that means that chemical equation (2.2) of the reaction

(2.1) has an infinite number of sets of coefficients.

Remark 3.9. Those chemical reactions with proper-

ties of Corollary 3.8, we shall call continuum reactions,

because they can be reduced to the Cantor’s continuum

problem.28

It shows that the balancing of chemical equations is nei-

ther simple nor easy matter. To date, these reactions were

not seriously considered in scientific literature, or more

accurately speaking these reactions were simply neglected,

because their research looks for a very sophisticated and

multidisciplinary approach. Just it was a challenge and

main motive of the author of this work, to dedicate his

research on these reactions.

Theorem 3.10. If g  is the class of subsets of N consisting

of ∅ and all subsets of N of the form Xn = {n, n + 1, n + 2,

…} with n ∈ N, then g  is a topology on N and n open sets

containing the positive integer n.

Proof. Since ∅ and X1 = {1, 2, 3, …} = N, belong to g ,

g  satisfies 1o of Definition 2.30. Furthermore, since g  is

totally ordered by set inclusion, g also satisfies 3o of Def-

inition 2.30.

Now, let T  be a subclass of g    \ {N, ∅}, i.e., T  = {Xn |

n ∈ I} where I is some set positive integers. Note that I

contains a smallest positive integer n0 and

∪ {X n | n ∈ I} = {n0, n0 + 1, n0 + 2, …} = X n0,

which belongs to g .  We want to show that g  also sat-

isfies 2° of Definition 2.30, i.e., that ∪ {X n |Xn ∈ T } ∈ g.

Case 1. If X ∈ T , then 

∪ {Xn |Xn ∈ T } = X, and therefore belongs to g by 1o

of Definition 2.30.

Case 2. If X ∉ T , then

∪ {X n|X n ∈T } = ∪ {X n|X n ∈T \ {X}}.

But the empty set ∅ does not contribute any elements to

union of sets; hence 

∪ {X n |X n ∈ T } = ∪ {X n |X n ∈T \ {X}} = ∪ {X n |X n

∈ T  \ {X, ∅}}.

Since T   is a subclass of g , T   \ {X, ∅} is a subclass of

g    \ {X, ∅}, so the union of any number of sets in g  \ {X,

∅} belongs to g .  Hence g satisfies g  \ {N, ∅}, and so

g  is a topology on N.

Since the non-empty open sets are of the form Xn = {n,

n + 1, n + 2, …} with n ∈ N, the open sets contain the pos-

itive integer n are the following

X1 = N = {1, 2, 3, …, n, n + 1, …},

X2 = {2, 3, …, n, n + 1, …},

                     

Xn = {n, n + 1, …}.

Theorem 3.11. Let g  be the topology on which con-

sists of ∅ and all subsets of  N of the form Xn = {n, n + 1, n

+ 2, …} with n ∈ N, then the derived set of Y = {y1, y2, …,

yn}, (y1 < y2 < ... < yn) of the coefficients of the chemical

equation (2.2) of the reaction (2.1) is Y’ = {1, 2, …, yn}.

Proof. Observe that the open sets containing any point x

∈N are the sets Xi where i ≤ x. If n0 ≤ yn – 1, then every

open set containing n0 also contains yn ∈ Y which is dif-

ferent from n0; hence n0 ≤ yn – 1 is a limit point of Y. On the

other hand, if n0 ≥ yn – 1 then the open set Xn0 = {n0, n0 + 1, n0

+ 2, …} contains no point of Y different from n0. So n0 ≥ yn

– 1 is not a limit point of Y. Accordingly, the derived set of

Y is Y’ = {1, 2, …, yn}.

Theorem 3.12. If Y is any subset of a discrete topo-

logical space (X, W ), then derived set Y’ of Y is empty.

Proof. Let x be any point in X. Recall that every subset

of a discrete space is open. Hence, in particular, the sin-

gleton set G = {x} is an open subset of X. But

x ∈ G ∧ G ∩ Y = {{x} ∩ Y ⊂ {x}}.

Hence, x ∉ Y’ for every x ∈ X, i.e., Y’ = ∅.

Theorem 3.13. If Y is a subset of X, then every limit

point of Y is also a limit point of X.

Proof. Recall that y ∈ Y’ if and only if {G \ {y}} ∩ Y ≠

∅ for every open set G containing y. But X⊃Y; therefore

{G \ {y}} ∩ X ⊃ {G \ {y}} ∩ Y ≠ ∅.

So y ∈ Y’ implies y ∈ X’, i.e., Y’ ⊂ X’.

Theorem 3.14. A subset Y of a topological space (X, g  )

is closed if and only if Y contains each of its accumulation

points.

Proof. Suppose Y is closed, and let y ∉ Y, i.e., y ∈ Yc. But

…
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Yc, the complement of a closed set, is open; therefore y ∉

Y’ for Yc is an open set such that

y ∈ Yc ∧ Yc ∩ Y = ∅.

Thus Y’⊂Y if Y is closed.

Now assume Y’⊂ Y; we show that Yc is open. Let y ∈ Yc;

then y ∉ Y’, so ∃ an open set G such that

y ∈ G ∧ {G \ {y}} ∩ Y = ∅.

But, y ∉ Y; hence G ∩ Y = {G \ {y}} ∩ Y = ∅.

So, G ⊂ Yc. Thus y is an interior point of Yc, and so Yc is

open.

Theorem 3.15. If Z is a closed superset of any set Y,

then Y’⊂ Z.

Proof. By Theorem 3.13, Y ⊂ Z implies Y’⊂ Z’. But, Z’

⊂ Z’ by Theorem 3. 14, since Z is closed. Thus Y’⊂ Z’⊂

Z, which implies Y’⊂ Z.

The last case, given by the Corollary 3.8., will be an

object of research in the next section.

APPLICATION OF THE MAIN RESULTS

Let’s consider the reaction

x1 Fe2O3 + x2 C → x3 Fe3O4 + x4 FeO

+ x5 Fe + x6 Fe3C + x7 CO + x8 CO2. (4.1)

This reaction was an object of research in theory of met-

allurgical processes. There it was considered only from

thermodynamic point of view.29,30 This reaction was stud-

ied broadly, but only in some particular cases. Its general

case will be an object of study just in this section. 

On one hand, at once we would like to emphasize that

this reaction belongs to the class of continuum reactions.

It is according to the Remark 3.9. On other hand, it shows

that it is a juicy problem which deserves to be studied and

solved in whole. 

Since the reaction (4.1) is very important for metallur-

gical engineering, chemistry and mathematics, just here

we shall consider it from this multidisciplinary aspect.

That aspect looks for a strict topological approach toward

on total solution of (4.1). This total solution gives an

opportunity to be seen both general solution of (4.1) and

its particular solutions generated by the reaction subgen-

erators.

First, we shall look for its minimal solution which is cru-

cial in theory of fundamental stoichiometric calculations

and foundation of chemistry. For that goal, let construct its

scheme. 

From the above scheme immediately follows reaction

matrix

with a rankA = 3.

It is well-known11 that the reaction (4.1) can reduce in

this matrix form

Ax = 0.  (4.2)

where x = (x1, x2, x3, x4, x5, x6, x7, x8)
T is the unknown vec-

tor of the coefficients of (4.1), 0 = (0, 0, 0)T is the zero vec-

tor and T denoting transpose.

The general solution of the matrix equation (4.2) is given

by the following expression

x = (I – A+A)a, (4.3)

where I is a unit matrix and a is an arbitrary vector.

The Moore-Penrose generalized inverse matrix, for the

chemical reaction (4.1), has this format

A+ = AT(A AT)–1

.

For instance, by using the vector 

a = (1, 1, 1, 1, 1, 1, 1, 1)T,

as an arbitrary chosen vector, A and A+ determined pre-

viously, by virtue of (4.3) one obtains the minimal solu-

tion of the matrix equation (4.2) given by

xmin = (1/1379) × (x1, x2, x3, x4, x5, x6, x7, x8)
T,

where x1 = 1954, x2 = 1854, x3 = 518, x4 = 1093, x5 = 1096,

x6 = 55, x7 = 901 and x8 = 898.

Fe2O3 C Fe3O4 FeO Fe Fe3C CO CO2

Fe 2 0 –3 –1 –1 –3  0  0

O 3 0 –4 –1  0  0 –1 –2

C 0 1  0  0  0 –1 –1 –1

A
2  0 3– 1– 1– 3–   0   0

3 0 4– 1–   0   0 1– 2–

0 1   0   0   0 1– 1– 1–

=

 1/1379( )

  29 127 117–

36– 15– 383

77– 147– 168

48– 20– 51

115– 67 36

309– 216 275–

  103 72– 368–

  170 159– 353–

×=
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Balanced chemical reaction (4.1) with minimal coeffi-

cients has this form

1954 Fe2O3 + 1854 C → 518 Fe3O4 + 1093 FeO + 

1096 Fe + 55 Fe3C + 901 CO + 898 CO2.

Now, we shall look for sets of solutions of the reaction

(4.1). From (4.1) immediately follows this system of lin-

ear equations

2x1 = 3x3 + x4 + x5 + 3x6,

3x1 = 4x3 + x4 + x7 + 2x8, 

x2 = x6 + x7 + x8, (4.4)

which general solution is

x6 = 2x1/3 – x3 – x4/3 – x5/3, 

x7 = – 13x1/3 + 2x2 + 6x3 + 5x4/3 + 2x5/3,

x8 = 11x1/3 – x2 – 5x3 – 4x4/3 – x5/3, (4.5)

where xi, (1 ≤ i ≤ 5) are arbitrary real numbers. Actually,

the expressions (4.5) represent the set {x6, x7, x8} of sub-

generators of the reaction (4.1). 

If we substitute (4.5) into (4.1), then one obtains bal-

anced reaction

3x1 Fe2O3 + 3x2 C → 3x3 Fe3O4 + 3x4 FeO + 3x5 Fe +

(2x1 – 3x3 – x4 – x5) Fe3C + (– 13x1 + 6x2 + 18x3 + 5x4 + 2x5)

CO + (11x1 – 3x2 – 15x3 – 4x4 – x5) CO2, (4.6)

in its general form, where xi, (1 ≤ i ≤ 5) are arbitrary real

numbers.

According to the Definition 2.17, the set of the coeffi-

cients of (4.1) is 

X = {3x1, 3x2, 3x3, 3x4, 3x5, 2x1 – 3x3 – x4 – x5, – 13x1 

+ 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5},

(4.7)

where xi, (1 ≤ i ≤ 5) are arbitrary real numbers.

If we take into account the Definition 2.18, then the car-

dinality of the set X, given by (4.7), is CardX = |X| = 8, and

according to the Definition 2.20, follows Cardc  (X) = 2|X|

= 28 = 256, that means that the power set c (X) of the set

X of the coefficients of chemical reaction (4.1) contains

256 members, which are subsets of X, i.e.,

c (X) = {∅, {3x1}, {3x2}, {3x3}, {3x4}, {3x5}, {2x1 –

3x3 – x4 – x5}, {– 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {11x1 – 3x2

– 15x3 – 4x4 – x5}, {3x1, 3x2}, {3x1, 3x3}, {3x1, 3x4}, {3x1,

3x5}, {3x1, 2x1 – 3x3 – x4 – x5}, {3x1, – 13x1 + 6x2 + 18x3 +

5x4 + 2x5}, {3x1, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x2, 3x3},

{3x2, 3x4}, {3x2, 3x5}, {3x2, 2x1 – 3x3 – x4 – x5}, {3x2, –

13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x2, 11x1 – 3x2 – 15x3 – 4x4

– x5}, {3x3, 3x4}, {3x3, 3x5}, {3x3, 2x1 – 3x3 – x4 – x5}, {3x3,

– 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x3, 11x1 – 3x2 – 15x3 –

4x4 – x5}, {3x4, 3x5}, {3x4, 2x1 – 3x3 – x4 – x5}, {3x4, – 13x1

+ 6x2 + 18x3 + 5x4 + 2x5}, {3x4, 11x1 – 3x2 – 15x3 – 4x4 –

x5}, {3x5, 2x1 – 3x3 – x4 – x5}, {3x5, – 13x1 + 6x2 + 18x3 +

5x4 + 2x5}, {3x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {2x1 – 3x3 –

x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {2x1 – 3x3 – x4 – x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {– 13x1 + 6x2 + 18x3 + 5x4 +

2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x2, 3x3}, {3x1, 3x2,

3x4}, {3x1, 3x2, 3x5}, {3x1, 3x2, 2x1 – 3x3 – x4 – x5}, {3x1,

3x2, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x1, 3x2, 11x1 – 3x2 –

15x3 – 4x4 – x5}, {3x1, 3x3, 3x4}, {3x1, 3x3, 3x5}, {3x1, 3x3,

2x1 – 3x3 – x4 – x5}, {3x1, 3x3, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5}, {3x1, 3x3, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x4,

3x5}, {3x1, 3x4, 2x1 – 3x3 – x4 – x5}, {3x1, 3x4, – 13x1 + 6x2 +

18x3 + 5x4 + 2x5}, {3x1, 3x4, 11x1 – 3x2 – 15x3 – 4x4 – x5},

{3x1, 3x5, 2x1 – 3x3 – x4 – x5}, {3x1, 3x5, – 13x1 + 6x2 + 18x3

+ 5x4 + 2x5}, {3x1, 3x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1,

2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x1,

2x1 – 3x3 – x4 – x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, – 13x1

+ 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x2,

3x3, 3x4}, {3x2, 3x3, 3x5}, {3x2, 3x3, 2x1 – 3x3 – x4 – x5},

{3x2, 3x3, 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x2, 3x3, 11x1 –

3x2 – 15x3 – 4x4 – x5}, {3x2, 3x4, 3x5}, {3x2, 3x4, 2x1 – 3x3 –

x4 – x5}, {3x2, 3x4, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x2,

3x4, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x2, 3x5, 2x1 – 3x3 – x4 –

x5}, {3x2, 3x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x2, 3x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x2, 2x1 – 3x3 – x4 – x5, – 13x1

+ 6x2 + 18x3 + 5x4 + 2x5}, {3x2, 2x1 – 3x3 – x4 – x5, 11x1 –

3x2 – 15x3 – 4x4 – x5}, {3x2, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x3, 3x4, 3x5}, {3x3, 3x4, 2x1

– 3x3 – x4 – x5}, {3x3, 3x4, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5},

{3x3, 3x4, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x3, 3x5, 2x1 – 3x3

– x4 – x5}, {3x3, 3x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x3,

3x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x3, 2x1 – 3x3 – x4 – x5, –

13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x3, 2x1 – 3x3 – x4 – x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x3, – 13x1 + 6x2 + 18x3 + 5x4

+ 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x4, 3x5, 2x1 – 3x3 – x4

– x5}, {3x4, 3x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x4, 3x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x4, 2x1 – 3x3 – x4 – x5, – 13x1

+ 6x2 + 18x3 + 5x4 + 2x5}, {3x4, 2x1 – 3x3 – x4 – x5, 11x1 –

3x2 – 15x3 – 4x4 – x5}, {3x4, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x5, 2x1 – 3x3 – x4 – x5, – 13x1

+ 6x2 + 18x3 + 5x4 + 2x5}, {3x5, 2x1 – 3x3 – x4 – x5, 11x1 –

3x2 – 15x3 – 4x4 – x5}, {3x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {2x1 – 3x3 – x4 – x5, – 13x1 +

6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1,

3x2, 3x3, 3x4}, {3x1, 3x2, 3x3, 3x5}, {3x1, 3x2, 3x3, 2x1 – 3x3

– x4 – x5}, {3x1, 3x2, 3x3, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5},
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{3x1, 3x2, 3x3, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x2, 3x4,

3x5}, {3x1, 3x2, 3x4, 2x1 – 3x3 – x4 – x5}, {3x1, 3x2, 3x4, –

13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x1, 3x2, 3x4, 11x1 – 3x2 –

15x3 – 4x4 – x5}, {3x1, 3x2, 3x5, 2x1 – 3x3 – x4 – x5}, {3x1,

3x2, 3x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x1, 3x2, 3x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x2, 2x1 – 3x3 – x4 – x5, –

13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x1, 3x2, 2x1 – 3x3 – x4 – x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x2, – 13x1 + 6x2 + 18x3

+ 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x3, 3x4,

3x5}, {3x1, 3x3, 3x4, 2x1 – 3x3 – x4 – x5}, {3x1, 3x3, 3x4, –

13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x1, 3x3, 3x4, 11x1 – 3x2 –

15x3 – 4x4 – x5}, {3x1, 3x3, 3x5, 2x1 – 3x3 – x4 – x5}, {3x1,

3x3, 3x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x1, 3x3, 3x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x3, 2x1 – 3x3 – x4 – x5, –

13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x1, 3x3, 2x1 – 3x3 – x4 – x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x3, – 13x1 + 6x2 + 18x3

+ 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x4, 3x5, 2x1

– 3x3 – x4 – x5}, {3x1, 3x4, 3x5, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5}, {3x1, 3x4, 3x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x4,

2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x1,

3x4, 2x1 – 3x3 – x4 – x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1,

3x4, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4

– x5}, {3x1, 3x5, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4

+ 2x5}, {3x1, 3x5, 2x1 – 3x3 – x4 – x5, 11x1 – 3x2 – 15x3 – 4x4

– x5}, {3x1, 3x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2

– 15x3 – 4x4 – x5}, {3x1, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 +

18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x2, 3x3,

3x4, 3x5}, {3x2, 3x3, 3x4, 2x1 – 3x3 – x4 – x5}, {3x2, 3x3, 3x4,

– 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x2, 3x3, 3x4, 11x1 – 3x2 –

15x3 – 4x4 – x5}, {3x2, 3x3, 3x5, 2x1 – 3x3 – x4 – x5}, {3x2,

3x3, 3x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x2, 3x3, 3x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x2, 3x3, 2x1 – 3x3 – x4 – x5, –

13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x2, 3x3, 2x1 – 3x3 – x4 – x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x2, 3x3, – 13x1 + 6x2 + 18x3

+ 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x2, 3x4, 3x5, 2x1

– 3x3 – x4 – x5}, {3x2, 3x4, 3x5, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5}, {3x2, 3x4, 3x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x2, 3x4,

2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x2,

3x4, 2x1 – 3x3 – x4 – x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x2,

3x4, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4

– x5}, {3x2, 3x5, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4

+ 2x5}, {3x2, 3x5, 2x1 – 3x3 – x4 – x5, 11x1 – 3x2 – 15x3 – 4x4

– x5}, {3x2, 3x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2

– 15x3 – 4x4 – x5}, {3x2, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 +

18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x3, 3x4,

3x5, 2x1 – 3x3 – x4 – x5}, {3x3, 3x4, 3x5, – 13x1 + 6x2 + 18x3 +

5x4 + 2x5}, {3x3, 3x4, 3x5, 11x1 – 3x2 – 15x3 – 4x4 – x5},

{3x3, 3x4, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5}, {3x3, 3x4, 2x1 – 3x3 – x4 – x5, 11x1 – 3x2 – 15x3 – 4x4 –

x5}, {3x3, 3x4, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 –

15x3 – 4x4 – x5}, {3x3, 3x5, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 +

18x3 + 5x4 + 2x5}, {3x3, 3x5, 2x1 – 3x3 – x4 – x5, 11x1 – 3x2 –

15x3 – 4x4 – x5}, {3x3, 3x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x3, 2x1 – 3x3 – x4 – x5, – 13x1

+ 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x4,

3x5, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5},

{3x4, 3x5, 2x1 – 3x3 – x4 – x5, 11x1 – 3x2 – 15x3 – 4x4 – x5},

{3x4, 3x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3

– 4x4 – x5}, {3x4, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 +

5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x5, 2x1 – 3x3 – x4

– x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4

– x5}, {3x1, 3x2, 3x3, 3x4, 3x5}, {3x1, 3x2, 3x3, 3x4, 2x1 – 3x3

– x4 – x5}, {3x1, 3x2, 3x3, 3x4, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5}, {3x1, 3x2, 3x3, 3x4, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1,

3x2, 3x3, 3x5, 2x1 – 3x3 – x4 – x5}, {3x1, 3x2, 3x3, 3x5, – 13x1

+ 6x2 + 18x3 + 5x4 + 2x5}, {3x1, 3x2, 3x3, 3x5, 11x1 – 3x2 –

15x3 – 4x4 – x5}, {3x1, 3x2, 3x3, 2x1 – 3x3 – x4 – x5, – 13x1 +

6x2 + 18x3 + 5x4 + 2x5}, {3x1, 3x2, 3x3, 2x1 – 3x3 – x4 – x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x2, 3x3, – 13x1 + 6x2 +

18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x2,

3x4, 3x5, 2x1 – 3x3 – x4 – x5}, {3x1, 3x2, 3x4, 3x5, – 13x1 + 6x2

+ 18x3 + 5x4 + 2x5}, {3x1, 3x2, 3x4, 3x5, 11x1 – 3x2 – 15x3 –

4x4 – x5}, {3x1, 3x2, 3x4, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 +

18x3 + 5x4 + 2x5}, {3x1, 3x2, 3x4, 2x1 – 3x3 – x4 – x5, 11x1 –

3x2 – 15x3 – 4x4 – x5}, {3x1, 3x2, 3x4, – 13x1 + 6x2 + 18x3 +

5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x2, 3x5, 2x1 –

3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x1, 3x2,

3x5, 2x1 – 3x3 – x4 – x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1,

3x2, 3x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 –

4x4 – x5}, {3x1, 3x2, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 +

5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x3, 3x4, 3x5,

2x1 – 3x3 – x4 – x5}, {3x1, 3x3, 3x4, 3x5, – 13x1 + 6x2 + 18x3 +

5x4 + 2x5}, {3x1, 3x3, 3x4, 3x5, 11x1 – 3x2 – 15x3 – 4x4 – x5},

{3x1, 3x3, 3x4, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5}, {3x1, 3x3, 3x4, 2x1 – 3x3 – x4 – x5, 11x1 – 3x2 – 15x3 –

4x4 – x5}, {3x1, 3x3, 3x4, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x3, 3x5, 2x1 – 3x3 – x4 –

x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x1, 3x3, 3x5, 2x1 – 3x3

– x4 – x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x3, 3x5, – 13x1

+ 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1,

3x3, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1

– 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x4, 3x5, 2x1 – 3x3 – x4 – x5, –

13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x1, 3x4, 3x5, 2x1 – 3x3 – x4

– x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x4, 3x5, – 13x1 +

6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1,

3x4, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1

– 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x5, 2x1 – 3x3 – x4 – x5, – 13x1

+ 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x2,
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3x3, 3x4, 3x5, 2x1 – 3x3 – x4 – x5}, {3x2, 3x3, 3x4, 3x5, – 13x1

+ 6x2 + 18x3 + 5x4 + 2x5}, {3x2, 3x3, 3x4, 3x5, 11x1 – 3x2 –

15x3 – 4x4 – x5}, {3x2, 3x3, 3x4, 2x1 – 3x3 – x4 – x5, – 13x1 +

6x2 + 18x3 + 5x4 + 2x5}, {3x2, 3x3, 3x4, 2x1 – 3x3 – x4 – x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x2, 3x3, 3x4, – 13x1 + 6x2 +

18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x2, 3x3,

3x5, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5},

{3x2, 3x3, 3x5, 2x1 – 3x3 – x4 – x5, 11x1 – 3x2 – 15x3 – 4x4 –

x5}, {3x2, 3x3, 3x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 –

3x2 – 15x3 – 4x4 – x5}, {3x2, 3x3, 2x1 – 3x3 – x4 – x5, – 13x1 +

6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x2,

3x4, 3x5, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5},

{3x2, 3x4, 3x5, 2x1 – 3x3 – x4 – x5, 11x1 – 3x2 – 15x3 – 4x4 –

x5}, {3x2, 3x4, 3x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 –

3x2 – 15x3 – 4x4 – x5}, {3x2, 3x4, 2x1 – 3x3 – x4 – x5, – 13x1 +

6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x2,

3x5, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1

– 3x2 – 15x3 – 4x4 – x5}, {3x3, 3x4, 3x5, 2x1 – 3x3 – x4 – x5, –

13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x3, 3x4, 3x5, 2x1 – 3x3 – x4

– x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x3, 3x4, 3x5, – 13x1 +

6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x3,

3x4, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1

– 3x2 – 15x3 – 4x4 – x5}, {3x3, 3x5, 2x1 – 3x3 – x4 – x5, – 13x1

+ 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x4,

3x5, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1

– 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x2, 3x3, 3x4, 3x5, 2x1 – 3x3 –

x4 – x5}, {3x1, 3x2, 3x3, 3x4, 3x5, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5}, {3x1, 3x2, 3x3, 3x4, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 +

18x3 + 5x4 + 2x5}, {3x1, 3x2, 3x3, 3x5, 2x1 – 3x3 – x4 – x5, –

13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x1, 3x2, 3x4, 3x5, 2x1 – 3x3

– x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x1, 3x3, 3x4,

3x5, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5},

{3x2, 3x3, 3x4, 3x5, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 +

5x4 + 2x5}, {3x1, 3x2, 3x3, 3x4, 3x5, 11x1 – 3x2 – 15x3 – 4x4 –

x5}, {3x1, 3x2, 3x3, 3x4, 2x1 – 3x3 – x4 – x5, 11x1 – 3x2 – 15x3

– 4x4 – x5}, {3x1, 3x2, 3x3, 3x5, 2x1 – 3x3 – x4 – x5, 11x1 – 3x2

– 15x3 – 4x4 – x5}, {3x1, 3x2, 3x4, 3x5, 2x1 – 3x3 – x4 – x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x3, 3x4, 3x5, 2x1 – 3x3 –

x4 – x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x2, 3x3, 3x4, 3x5, 2x1

– 3x3 – x4 – x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x2, 3x3,

3x4, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4

– x5}, {3x1, 3x2, 3x3, 3x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x2, 3x4, 3x5, – 13x1 +

6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1,

3x3, 3x4, 3x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 –

15x3 – 4x4 – x5}, {3x2, 3x3, 3x4, 3x5, – 13x1 + 6x2 + 18x3 +

5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x2, 3x3, 2x1 –

3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 –

15x3 – 4x4 – x5}, {3x1, 3x2, 3x4, 2x1 – 3x3 – x4 – x5, – 13x1 +

6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1,

3x3, 3x4, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x2, 3x3, 3x4, 2x1 – 3x3 – x4 –

x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 –

x5}, {3x1, 3x2, 3x5, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 +

5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x3, 3x5, 2x1 –

3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 –

15x3 – 4x4 – x5}, {3x2, 3x3, 3x5, 2x1 – 3x3 – x4 – x5, – 13x1 +

6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1,

3x4, 3x5, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x2, 3x4, 3x5, 2x1 – 3x3 – x4 –

x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 –

x5}, {3x3, 3x4, 3x5, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 +

5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x2, 3x3, 3x4,

3x5, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5},

{3x1, 3x2, 3x3, 3x4, 3x5, 2x1 – 3x3 – x4 – x5, 11x1 – 3x2 – 15x3

– 4x4 – x5}, {3x1, 3x2, 3x3, 3x4, 3x5, – 13x1 + 6x2 + 18x3 +

5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x2, 3x3, 3x4,

2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 –

3x2 – 15x3 – 4x4 – x5}, {3x1, 3x2, 3x3, 3x5, 2x1 – 3x3 – x4 – x5,

– 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 –

x5}, {3x1, 3x2, 3x4, 3x5, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 +

18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x3,

3x4, 3x5, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x2, 3x3, 3x4, 3x5, 2x1 – 3x3 –

x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 –

4x4 – x5}, {3x1, 3x2, 3x3, 3x4, 3x5, 2x1 – 3x3 – x4 – x5, – 13x1

+ 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}},

 (4.8)

where xi, (1 ≤ i ≤ 5) are arbitrary real numbers.

According to the Definition 2.35, the discrete topology

of the reaction (4.1) is the topology W  = c  (X) on the set

X, where X and c  (X) are given by (4.7) and (4.8), respec-

tively. The pair (X, W ) is the discrete topological space of

the chemical reaction (4.1).

If we take into account the Definition 2.36, then the indis-

crete topology of the chemical reaction (4.1) is 

\ = {∅, X} = {∅, {3x1}, {3x2}, {3x3}, {3x4}, {3x5},

{2x1 – 3x3 – x4 – x5}, {– 13x1 + 6x2 + 18x3 + 5x4 + 2x5},

{11x1 – 3x2 – 15x3 – 4x4 – x5}}, (4.9)

where xi, (1 ≤ i ≤ 5) are arbitrary real numbers. 

The pair 

(X, \ ) = ({3x1, 3x2, 3x3, 3x4, 3x5, 2x1 – 3x3 – x4 – x5, –

13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5},

{∅, {3x1}, {3x2}, {3x3}, {3x4}, {3x5}, {2x1 – 3x3 – x4 – x5},

{– 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {11x1 – 3x2 – 15x3 – 4x4 –

x5}}), (4.10)
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is an indiscrete topological space of the chemical reaction

(4.1), where xi, (1 ≤ i ≤ 5) are arbitrary real numbers.

Now, we shall consider the following class of subsets

g = {X, ∅, {3x2}, {2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 +

18x3 + 5x4 + 2x5}, {3x2, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 +

18x3 + 5x4 + 2x5}, {3x3, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 +

18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}}, (4.11)

of

X = {3x2, 3x3, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4

+ 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, (4.12)

where xi, (1 ≤ i ≤ 5) are arbitrary real numbers.

Let’s check axioms of the Definition 2.30. 

1o Since X and ∅ belong to g , it means that the first

axiom of the Definition 2.30 is satisfied.

2o From the Definition 2.30, follows

X ∪ ∅ = X ∈ g ,

X ∪ {3x2} = X ∈ g ,

X ∪ {2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}

= X ∈ g , 

X ∪ {3x2, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5} = X ∈ g ,

X ∪ {3x3, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5} = X ∈ g ,

∅ ∪ {3x2} = {3x2} ∈ g ,

∅ ∪ {2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}

= {2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5} ∈ g ,

∅ ∪ {3x2, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5} = {3x2, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5} ∈ g ,

∅ ∪ {3x3, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5} = {3x3, 2x1 – 3x3 – x4 – x5, –

13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5} ∈ g , 

{3x2} ∪ {2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5} = {3x2, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5} ∈ g , 

{3x2} ∪ {3x2, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 +

5x4 + 2x5} = {3x2, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 +

5x4 + 2x5} ∈ g , 

{3x2} ∪ {3x3, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 +

5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5} = {3x2, 3x3, 2x1 – 3x3

– x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 –

4x4 – x5} = X ∈ g ,

{2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5} ∪

{3x2, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5} =

{3x2, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5} ∈ g ,

{2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5} ∪

{3x3, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 –

3x2 – 15x3 – 4x4 – x5} = {3x3, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 +

18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5} ∈ g ,

{3x2, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}

∪ {3x3, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5,

11x1 – 3x2 – 15x3 – 4x4 – x5} = {3x2, 3x3, 2x1 – 3x3 – x4 – x5,

– 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}

= X ∈ g .

We obtain that arbitrary union of any pair of sets of

g  belongs to g .  It shows that axiom 2o of Definition 2.30

is satisfied.

3o Now, we shall determine arbitrary intersections of

any number of sets of the class g .

X ∩ ∅ = ∅ ∈ g ,

X ∩ {3x2} = {3x2} ∈ g ,

X ∩ {2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}

= {2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5} ∈ g ,

X ∩ {3x2, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5} = {3x2, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5} ∈ g ,

X ∩ {3x3, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5,

11x1 – 3x2 – 15x3 – 4x4 – x5} = {3x3, 2x1 – 3x3 – x4 – x5, – 13x1 +

6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5} ∈ g,

∅ ∩ {3x2} = ∅ ∈ g ,

∅ ∩ {2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}

= ∅ ∈ g ,

∅ ∩ {3x2, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5} = ∅ ∈ g ,

∅ ∩ {3x3, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5} = ∅ ∈  g ,

{3x2} ∩ {2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5} = ∅ ∈ g ,

{3x2} ∩ {3x2, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 +

5x4 + 2x5} = {3x2}∈ g ,

{3x2} ∩ {3x3, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 +

5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5} = ∅ ∈ g ,

{2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5} ∩

{3x2, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5} =

{2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}∈ g ,

{2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5} ∩

{3x3, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5,

11x1 – 3x2 – 15x3 – 4x4 – x5} = {2x1 – 3x3 – x4 – x5, – 13x1 +

6x2 + 18x3 + 5x4 + 2x5}∈ g ,

{3x2, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}

∩ {3x3, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5,

11x1 – 3x2 – 15x3 – 4x4 – x5} = {2x1 – 3x3 – x4 – x5, – 13x1 +

6x2 + 18x3 + 5x4 + 2x5}∈ g ,
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where xi, (1 ≤ i ≤ 5) are arbitrary real numbers.

We obtain that arbitrary intersection of any number of

sets of the class g  belongs to g . That means, that is sat-

isfied the axiom 3o of Definition 2.30.

By this we showed that the class g  is topology on X

since it satisfies the necessary three axioms of Definition

2.30.

Consider the topology g  on X, given by (4.11) and

(4.12), respectively and the subset Y = {3x2, 3x3, 2x1 – 3x3

– x4 – x5} of X. Observe that 3x3 ∈ X is a limit point of Y

since the open sets containing 3x3 are {3x3, 2x1 – 3x3 – x4 –

x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 –

x5} and X, and each contains a point of Y different from

3x3, i.e., 2x1 – 3x3 – x4 – x5. On the other hand, the point 3x2

∈ X is not a limit point of Y since the open set {3x2},

which contains 3x2, does not contain a point of Y different

from 3x2. Similarly, the points – 13x1 + 6x2 + 18x3 + 5x4 +

2x5 and 11x1 – 3x2 – 15x3 – 4x4 – x5 are limit points of Y and

the point 2x1 – 3x3 – x4 – x5 is not limit point of Y.

So 

Y’ = {3x3, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 –

15x3 – 4x4 – x5},

is the derived set of Y, where xi, (1 ≤ i ≤ 5) are arbitrary real

numbers.

The closed subsets of X are

∅, X, {3x3, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x2, 3x3, 11x1 – 3x2 –

15x3 – 4x4 – x5}, {3x3, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x2}

that is, the complements of the open subsets of X. Note

that there are subsets of X, such as {3x3, 2x1 – 3x3 – x4 – x5,

– 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 –

x5}, which are both open and closed, and there are subsets

of X, such as {3x2, 3x3}, which are neither open nor closed.

Accordingly 

Cl{3x3} = {3x3, 11x1 – 3x2 – 15x3 – 4x4 – x5}, Cl{3x2, 2x1

– 3x3 – x4 – x5} = X, 

Cl{3x3, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5} = {3x3, 2x1 – 3x3

– x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 –

4x4 – x5},

where xi, (1 ≤ i ≤ 5) are arbitrary real numbers.

Therefore the set {3x2, 2x1 – 3x3 – x4 – x5} is a dense sub-

set of X, but the set {3x3, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5} is

not, where xi, (1 ≤ i ≤ 5) are arbitrary real numbers.

Consider the topology (4.11) on (4.12) and the subset Y =

{3x3, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5} of X.

The points 2x1 – 3x3 – x4 – x5 and – 13x1 + 6x2 + 18x3 +

5x4 + 2x5 are each interior points of Y since 2x1 – 3x3 – x4 –

x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5 ∈ {2x1 – 3x3 – x4 – x5, –

13x1 + 6x2 + 18x3 + 5x4 + 2x5} ⊂ Y, where {2x1 – 3x3 – x4 –

x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5} is an open set. The

point 3x3 ∈ Y is not an interior point of Y; so Int{Y} = {2x1

– 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}. Only the

point 3x2 ∈ X is exterior to Y, i.e., interior to the com-

plement Yc = {3x2, 11x1 – 3x2 – 15x3 – 4x4 – x5} of Y; hence

Ext{Y} = Int{Yc} = {3x2}. Accordingly the boundary of Y

consists of the points 3x3 and 11x1 – 3x2 – 15x3 – 4x4 – x5,

i.e., Bd{Y} = {3x3, 11x1 – 3x2 – 15x3 – 4x4 – x5}, where xi,

(1 ≤ i ≤ 5) are arbitrary real numbers.

Consider the topology g on X, given by (4.11) and

(4.12), respectively and the subset Y = {3x2, – 13x1 + 6x2 +

18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5} of X.

Observe that 

X ∩ Y = Y, {3x2} ∩ Y = {3x2}, {3x2, 2x1 – 3x3 – x4 – x5,

– 13x1 + 6x2 + 18x3 + 5x4 + 2x5} ∩ Y = {3x2, 2x1 – 3x3 – x4 –

x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}.

∅ ∩ Y = ∅, {2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4

+ 2x5} ∩ Y = {– 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x3, 2x1 –

3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 –

15x3 – 4x4 – x5} ∩ Y = {– 13x1 + 6x2 + 18x3 + 5x4 + 2x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}.

Hence the relativization of g  to Y is 

g Y = {Y, ∅, {3x2}, {– 13x1 + 6x2 + 18x3 + 5x4 + 2x5},

{{3x2}, {– 13x1 + 6x2 + 18x3 + 5x4 + 2x5}}, {{– 13x1 +

6x2 + 18x3 + 5x4 + 2x5}, {11x1 – 3x2 – 15x3 – 4x4 – x5}}},

where xi, (1 ≤ i ≤ 5) are arbitrary real numbers.

From (4.5) and the Definition 2.13, follows this system

of inequalities

2x1 – 3x3 – x4 – x5 > 0, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5 > 0,

11x1 – 3x2 – 15x3 – 4x4 – x5 > 0. (4.13)

From (4.13), one obtains the relation 

3x2 < 11x1 – 15x3 – 4x4 – x5 < 6x2. (4.14)

The expression (4.14) is a necessary and sufficient con-

dition to hold the general reaction (4.6).

Example 4.1. For x3 = 1/3, x4 = 1 and x5 = 1 from the first

inequality of (4.13) follows x1 = 2, then from (4.14) imme-

diately follows x2 = 3 and from (4.5) one obtains x6 = 1/3,

x7 = 5/3 and x8 = 1, such that the particular reaction of (4.6)

has a form

6 Fe2O3 + 9 C → Fe3O4 + 3 FeO + 3 Fe + Fe3C + 5 CO +

3 CO2.
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Now we shall find the dimension and the basis of the

solution space W of the system (4.4) generated by the

chemical reaction (4.1).

The system (4.4) reduces to this form

x1 – 3x3/2 – x4/2 – x5/2 – 3x6/2 = 0, x2 – x6 – x7 – x8 = 0,

x3 + x4 + 3x5 + 9x6 – 2x7 – 4x8 = 0. (4.15)

The system (4.15) has a three (nonzero) equations in

eight unknowns; and hence the system has 8 – 3 = 5 free

variables which are x4, x5, x6, x7 and x8. Thus dimW = 5.

To obtain a basis for W, one sets

1º x4 = 1, x5 = x6 = x7 = x8 = 0 in (4.15), such that the solu-

tion is x1 = (– 1, 0, – 1, 1, 0, 0, 0, 0),

2º x4 = 0, x5 = 1, x6 = x7 = x8 = 0 in (4.15), such that the

solution is x2 = (– 4, 0, – 3, 0, 1, 0, 0, 0), 

3º x4 = x5 = 0, x6 = 1, x7 = x8 = 0 in (4.15), such that the

solution is x3 = (– 12, 1, – 9, 0, 0, 1, 0, 0),

4º x4 = x5 = x6 = 0, x7 = 1, x8 = 0 in (4.15), such that the

solution is x4 = (3, 1, 2, 0, 0, 0, 1, 0),

5º x4 = x5 = x6 = x7 = 0, x8 = 1 in (4.15), such that the solu-

tion is x5 = (6, 1, 4, 0, 0, 0, 0, 1).

The set W = {x1, x2, x3, x4, x5} is a basis of the solution

space W.

Since AWT and WAT are zero matrices of format 3×5 and

5×3, respectively, that means that the orthogonal com-

plement W⊥ of (4.1) is

W⊥ = 

Now, we shall consider some particular cases of the

reaction (4.6) generated by its generators. 

I. Particular cases of (4.6) generated by the subgener-

ator 2x1 – 3x3 – x4 – x5

Here, we would like to emphasize that with considered

particular cases the chemical reaction (4.6) do not lose its

generality. 

1o If x1 = (3x3 + x4 + x5)/2, then the reaction (4.6) trans-

forms into

(3x3 + x4 + x5) Fe2O3 + 2x2 C → 2x3 Fe3O4 + 2x4 FeO +

2x5 Fe + (4x2 – x3 – x4 – 3x5) CO + (– 2x2 + x3 + x4 + 3x5)

CO2, (4.16)

where xi, (2 ≤ i ≤ 5) are arbitrary real numbers.

From (4.16) follow these inequalities 

4x2 – x3 – x4 – 3x5 > 0

and

– 2x2 + x3 + x4 + 3x5 > 0,

or

2x2 < x3 + x4 + 3x5 < 4x2.  (4.17)

Reaction (4.16) is possible if and only if (4.17) holds.

Example 4.2. For x3 = x4 = 1 and x5 = 2/3 from (4.17) one

obtains x2 = 3/2, such that particular reaction of (4.16) has

a form

14 Fe2O3 + 9 C → 6 Fe3O4 + 6 FeO + 4 Fe + 6 CO + 3

CO2.  (4.18)

2o If x2 = (x3 + x4 + 3x5)/4, then the reaction (4.16)

becomes

(6x3 + 2x4 + 2x5) Fe2O3 + (x3 + x4 + 3x5) C → 4x3 Fe3O4 +

4x4 FeO + 4x5 Fe + (x3 + x4 + 3x5) CO2, (∀ x3, x4, x5 ∈ R)

(4.19)

where xi, (3 ≤ i ≤ 5) are arbitrary real numbers.

3o If x2 > (x3 + x4 + 3x5)/4, then the reaction (4.16) trans-

forms into

(3x3 + x4 + x5) Fe2O3 + 2x2 C + (2x2 – x3 – x4 – 3x5) CO2

2x3 Fe3O4 + 2x4 FeO + 2x5 Fe + (4x2 – x3 – x4 – 3x5) CO,

(4.20)

where xi, (2 ≤ i ≤ 5) are arbitrary real numbers.

From (4.20) one obtains

3x3 + x4 + x5 > 0, 2x2 – x3 – x4 – 3x5 > 0, 4x2 – x3 – x4 – 3x5

> 0. (4.21)

The system of inequalities (4.21) holds if and only if 

x4 < 2x2 – x3 – 3x5.  (4.22)

Expression (4.22) is a necessary and sufficient condi-

tion to hold (4.20).

Example 4.3. For x2 = 3, x3 = 1 and x5 = 1, from (4.22)

one obtains x4 = 1, such that particular reaction of (4.20)

has a form

5 Fe2O3 + 6 C + CO2 → 2 Fe3O4 + 2 FeO + 2 Fe + 7 CO.

(4.23)

4o If x2 = (x3 + x4 + 3x5)/2, then (4.20) becomes

(3x3 + x4 + x5) Fe2O3 + (x3 + x4 + 3x5) C → 2x3 Fe3O4 +

2x4 FeO + 2x5 Fe + (x3 + x4 + 3x5) CO, (∀ x3, x4, x5 ∈ R)

(4.24)

where xi, (3 ≤ i ≤ 5) are arbitrary real numbers.

5o If x2 > (x3 + x4 + 3x5)/2, then (4.20) holds.

1–   0 1–   1   0   0   0   0

4– 0 3– 0 1 0 0 0

12– 1 9– 0 0 1 0 0

3 1 2 0 0 0 1 0

6 1 4 0 0 0 0 1
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6o If x2 < (x3 + x4 + 3x5)/2, then (4.20) becomes

(3x3 + x4 + x5) Fe2O3 + 2x2 C → 2x3 Fe3O4 + 2x4 FeO +

2x5 Fe + (4x2 – x3 – x4 – 3x5) CO + (– 2x2 + x3 + x4 + 3x5)

CO2, (4.25)

where xi, (2 ≤ i ≤ 5) are arbitrary real numbers.

7o If x2 = (x3 + x4 + 3x5)/4, then from (4.20) follows

(4.19).

8o If x2 > (x3 + x4 + 3x5)/4, then from (4.20) one obtains

(4.16).

9o If x2 < (x3 + x4 + 3x5)/4, then (4.20) becomes

(3x3 + x4 + x5) Fe2O3 + 2x2 C + (– 4x2 + x3 + x4 + 3x5) CO

→ 2x3 Fe3O4 + 2x4 FeO + 2x5 Fe + (– 2x2 + x3 + x4 + 3x5)

CO2. (4.26)

10o If x2 < (x3 + x4 + 3x5)/4, then the reaction (4.16)

transforms into (4.26).

11o For x2 = (x3 + x4 + 3x5)/2, then (4.16) becomes

(4.24).

12o If x2 > (x3 + x4 + 3x5)/2, then (4.16) transforms into

(4.20).

13o If x2 < (x3 + x4 + 3x5)/2, then (4.16) holds.

14o If x1 > (3x3 + x4 + x5)/2, then (4.6) becomes

3x1 Fe2O3 + 3x2 C + (13x1 – 6x2 – 18x3 – 5x4 – 2x5) CO →

3x3 Fe3O4 + 3x4 FeO + 3x5 Fe + (2x1 – 3x3 – x4 – x5) Fe3C +

(11x1 – 3x2 – 15x3 – 4x4 – x5) CO2, (4.27)

where xi, (1 ≤ i ≤ 5) are arbitrary real numbers.

Reaction (4.27) is possible if and only if holds this sys-

tem of inequalities

13x1 – 6x2 – 18x3 – 5x4 – 2x5 > 0, 2x1 – 3x3 – x4 – x5 > 0, 

11x1 – 3x2 – 15x3 – 4x4 – x5 > 0, (4.28)

i.e.,

x1 > (6x2 + 18x3 + 5x4 + 2x5)/13.

The above inequality is a necessary and sufficient con-

dition to hold reaction (4.27).

Example 4.4. For x3 = 2/3, x4 = x5 = 1 and x1 = 3, from

(4.17) one obtains x2 = 2, such that particular reaction of

(4.27) has a form

9 Fe2O3 + 6 C + 8 CO → 2 Fe3O4 + 3 FeO + 3 Fe + 2

Fe3C + 12 CO2. (4.29)

15o If x1 = (6x2 + 18x3 + 5x4 + 2x5)/13, then (4.27)

becomes

(6x2 + 18x3 + 5x4 + 2x5) Fe2O3 + 13x2 C → 13x3 Fe3O4 +

13x4 FeO + 13x5 Fe + (4x2 – x3 – x4 – 3x5) Fe3C + (9x2 + x3 +

x4 + 3x5) CO2, (4.30)

where xi, (2 ≤ i ≤ 5) are arbitrary real numbers.

From the above reaction (4.30) one obtains this system

of inequalities

6x2 + 18x3 + 5x4 + 2x5 > 0, 4x2 – x3 – x4 – 3x5 > 0, 9x2 + x3

+ x4 + 3x5 > 0. (4.31)

From (4.31) immediately follows this expression

x3 + x4 + 3x5 < 4x2, (4.32)

which is a necessary and sufficient condition to hold

(4.30). 

Example 4.5. For x3 = x4 = x5 = 1, from (4.32) one

obtains x2 = 3/2, such that particular reaction of (4.30) has

a form

68 Fe2O3 + 39 C → 26 Fe3O4 + 26 FeO + 26 Fe + 2 Fe3C

+ 37 CO2. (4.33)

16o If x2 = (x3 + x4 + 3x5)/4, then (4.30) transforms into

(4.19). 

17o If x2 > (x3 + x4 + 3x5)/4, then (4.30) holds.

18o If x2 < (x3 + x4 + 3x5)/4, then (4.30) becomes

(6x2 + 18x3 + 5x4 + 2x5) Fe2O3 + 13x2 C + (– 4x2 + x3 + x4

+ 3x5) Fe3C 13x3 Fe3O4 + 13x4 FeO + 13x5 Fe + (9x2 + x3 +

x4 + 3x5) CO2, (4.34)

where xi, (2 ≤ i ≤ 5) are arbitrary real numbers.

19o If x2 = (x3 + x4 + 3x5)/4, then (4.34) transforms into

(4.19).

20o If x1 > (6x2 + 18x3 + 5x4 + 2x5)/13, then (4.27) holds.

21o If x1 < (6x2 + 18x3 + 5x4 + 2x5)/13, then (4.27)

becomes

3x1 Fe2O3 + 3x2 C + (– 2x1 + 3x3 + x4 + x5) Fe3C + (– 11x1

+ 3x2 + 15x3 + 4x4 + x5) CO2 → 3x3 Fe3O4 + 3x4 FeO + 3x5

Fe + (– 13x1 + 6x2 + 18x3 + 5x4 + 2x5) CO, (4.35)

where xi, (1 ≤ i ≤ 5) are arbitrary real numbers.

22o If x1 = (3x3 + x4 + x5)/2, then from (4.27) follows

(3x3 + x4 + x5) Fe2O3 + 6x2 C + (– 12x2 + 3x3 + 3x4 + 9x5)

CO → 6x3 Fe3O4 + 6x4 FeO + 6x5 Fe + (– 6x2 + 3x3 + 3x4 +

9x5) CO2, (4.36)

where xi, (2 ≤ i ≤ 5) are arbitrary real numbers.

23o If x1 > (3x3 + x4 + x5)/2, then holds (4.27).

24o If x1 < (3x3 + x4 + x5)/2, then (4.27) becomes (4.35).

25o If x1 = (3x2 + 15x3 + 4x4 + x5)/11, then from (4.27)

follows

(3x2 + 15x3 + 4x4 + x5) Fe2O3 + 11x2 C → 11x3 Fe3O4 +
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11x4 FeO + 11x5 Fe + (2x2 – x3 – x4 – 3x5) Fe3C + (9x2 + x3 +

x4 + 3x5) CO, (4.37)

where xi, (2 ≤ i ≤ 5) are arbitrary real numbers.

The reaction (4.37) holds if and only if 

2x2 > x3 + x4 + 3x5. (4.38)

26o If x2 = (x3 + x4 + 3x5)/2, then (4.37) transforms into

(4.24). 

27o If x2 > (x3 + x4 + 3x5)/2, then (4.37) holds.

28o If x2 < (x3 + x4 + 3x5)/2, then (4.37) becomes

(3x2 + 15x3 + 4x4 + x5) Fe2O3 + (– 2x2 + x3 + x4 + 3x5)

Fe3C + 11x2 C → 11x3 Fe3O4 + 11x4 FeO + 11x5 Fe + (9x2 +

x3 + x4 + 3x5) CO, (4.39)

where xi, (2 ≤ i ≤ 5) are arbitrary real numbers.

29o If x1 > (3x2 + 15x3 + 4x4 + x5)/11, then (4.27) holds.

30o If x1 < (3x2 + 15x3 + 4x4 + x5)/11, then (4.27)

becomes (4.35).

The reaction (4.35) holds if and only if the following

system of inequalities is satisfied

– 2x1 + 3x3 + x4 + x5 > 0, – 11x1 + 3x2 + 15x3 + 4x4 + x5 >

0, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5 > 0. (4.40)

From (4.40) immediately follows this inequality

x1 < (6x2 + 18x3 + 5x4 + 2x5)/13.

The last inequality is a necessary and sufficient condi-

tion the reaction (4.35) to be possible.

31o If x1 = (3x3 + x4 + x5)/2, then (4.35) becomes (4.20).

32o If x1 = (3x2 + 15x3 + 4x4 + x5)/11, then from (4.35)

one obtains (4.39).

33o If x1 = (6x2 + 18x3 + 5x4 + 2x5)/13, then (4.35) trans-

forms into (4.34).

34o If x1 < (3x3 + x4 + x5)/2, then (4.6) becomes (4.35).

II. Particular cases of (4.6) generated by – 13x1 + 6x2 +

18x3 + 5x4 + 2x5

35o If x1 = (6x2 + 18x3 + 5x4 + 2x5)/13, then (4.6) trans-

forms into (4.30).

36o If x1 > (6x2 + 18x3 + 5x4 + 2x5)/13, then from (4.6)

one obtains (4.27).

37o If x1 < (6x2 + 18x3 + 5x4 + 2x5)/13, then (4.6)

becomes (4.35).

III. Particular cases of (4.6) generated by the subgen-

erator 11x1 – 3x2 – 15x3 – 4x4 – x5

38o If x1 = (3x2 + 15x3 + 4x4 + x5)/11, then (4.6) trans-

forms into (4.37).

39o If x1 > (3x2 + 15x3 + 4x4 + x5)/11, then from (4.6) one

obtains

3x1 Fe2O3 + 3x2 C + (– 2x1 + 3x3 + x4 + x5) Fe3C → 3x3

Fe3O4 + 3x4 FeO + 3x5 Fe + (– 11x1 + 6x2 + 18x3 + 5x4 +

2x5) CO, + (– 11x1 + 3x2 + 15x3 + 4x4 + x5) CO2. (4.41)

40o If x1 < (3x2 + 15x3 + 4x4 + x5)/11, then (4.6) becomes

(4.35).

Next, we shall analyze some particular cases of the gen-

eral reaction (4.6) for xi = 0, (1 ≤ i ≤5). 

As particular reactions of (4.6) we shall derive the fol-

lowing cases. 

If x1 = 0, then from (4.6) one obtains this particular reaction

(3x3 + x4 + x5) Fe3C + (3x2 + 15x3 + 4x4 + x5) CO2 + 3x2 C

→ 3x3 Fe3O4 + 3x4 FeO + 3x5 Fe + (6x2 + 18x3 + 5x4 + 2x5)

CO, (∀ x2, x3, x4, x5 ∈ R). (4.42)

If x2 = 0, then from (4.6) follows

3x1 Fe2O3 3x3 Fe3O4 + 3x4 FeO + 3x5 Fe + (2x1 – 3x3 – x4

– x5) Fe3C + (– 13x1 + 18x3 + 5x4 + 2x5) CO + (11x1 – 15x3

– 4x4 – x5) CO2, (4.43)

where x1, x3, x4 and x5 are arbitrary real numbers.

In the reaction (4.43) the molecules arrangement is

given in an implicit form. To be find their explicit arrange-

ment, from (4.43) one obtains this system of inequalities

2x1 – 3x3 – x4 – x5 > 0, – 13x1 + 18x3 + 5x4 + 2x5 > 0, 11x1

– 15x3 – 4x4 – x5 > 0,

or

x1 = (15x3 + 4x4 + x5)/11, (4.44)

where x3, x4 and x5 are arbitrary real numbers.

If we substitute (4.44) in (4.43), then one obtains

(15x3 + 4x4 + x5) Fe2O3 + (x3 + x4 + 3x5) Fe3C → 11x3

Fe3O4 + 11x4 FeO + 11x5 Fe + (x3 + x4 + 3x5) CO, (∀ x3, x4,

x5 ∈ R). (4.45)

41o If x1 > (15x3 + 4x4 + x5)/11, then from (4.43) follows

this reaction

3x1 Fe2O3 + (– 2x1 + 3x3 + x4 + x5) Fe3C + (13x1 – 18x3 –

5x4 – 2x5) CO → 3x3 Fe3O4 + 3x4 FeO + 3x5 Fe + (11x1 –

15x3 – 4x4 – x5) CO2, (4.46)

where x1, x3, x4 and x5 are arbitrary real numbers.

From (4.46) one obtains this system of inequalities

– 2x1 + 3x3 + x4 + x5 > 0, 13x1 – 18x3 – 5x4 – 2x5 > 0, 11x1

– 15x3 – 4x4 – x5 > 0,

or

x1 > (18x3 + 5x4 + 2x5)/13,

where x1, x3, x4 and x5 are arbitrary real numbers.



192 Ice B. Risteski

Journal of the Korean Chemical Society

Last inequality is a necessary and sufficient condition to

hold (4.46).

42o If x1 = (3x3 + x4 + x5)/2, then from (4.46) follows this

reaction

(3x3 + x4 + x5) Fe2O3 + (x3 + x4 + 3x5) CO 2x3 Fe3O4 + 2x4

FeO + 2x5 Fe + (x3 + x4 + 3x5) CO2, (∀ x3, x4, x5 ∈ R). 

(4.47)

43o If x1 > (3x3 + x4 + x5)/2, then from (4.46) transforms

into

3x1 Fe2O3 + (13x1 – 18x3 – 5x4 – 2x5) CO → 3x3 Fe3O4 +

3x4 FeO + 3x5 Fe + (2x1 – 3x3 – x4 – x5) Fe3C + (11x1 – 15x3

– 4x4 – x5) CO2, (4.48)

where x1, x3, x4 and x5 are arbitrary real numbers.

From (4.48) one obtains this system of inequalities

13x1 – 18x3 – 5x4 – 2x5 > 0, 2x1 – 3x3 – x4 – x5 > 0, 11x1 –

15x3 – 4x4 – x5 > 0,

or

x1 > (3x3 + x4 + x5)/2.

where x1, x3, x4 and x5 are arbitrary real numbers.

Last inequality is necessary and sufficient condition to

hold (4.48).

44o If x1 < (3x3 + x4 + x5)/2, then from (4.46) follows this

reaction

3x1 Fe2O3 + (– 2x1 + 3x3 + x4 + x5) Fe3C + (– 11x1 + 15x3

+ 4x4 + x5) CO2 → 3x3 Fe3O4 + 3x4 FeO + 3x5 Fe + (– 13x1

+ 18x3 + 5x4 + 2x5) CO, (4.49)

where x1, x3, x4 and x5 are arbitrary real numbers.

From (4.49) one obtains this system of inequalities

– 2x1 + 3x3 + x4 + x5 > 0, – 11x1 + 15x3 + 4x4 + x5 > 0, –

13x1 + 18x3 + 5x4 + 2x5 > 0,

or

x1 < (3x3 + x4 + x5)/2,

where x1, x3, x4 and x5 are arbitrary real numbers.

Last inequality is a necessary and sufficient condition to

hold (4.49).

45o If x1 = (18x3 + 5x4 + 2x5)/13, then from (4.46) fol-

lows this reaction

(18x3 + 5x4 + 2x5) Fe2O3 + (x3 + x4 + 3x5) Fe3C 13x3 →

Fe3O4 + 13x4 FeO + 13x5 Fe + (x3 + x4 + 3x5) CO2, (∀ x3, x4,

x5 ∈ R). (4.50)

46o If x1 > (18x3 + 5x4 + 2x5)/13, then from (4.46) fol-

lows (4.48).

47o If x1 < (18x3 + 5x4 + 2x5)/13, then from (4.46) one

obtains (4.49). 

48o If x1 = (15x3 + 4x4 + x5)/11, then (4.46) transforms into

(15x3 + 4x4 + x5) Fe2O3 + (x3 + x4 + 3x5) Fe3C → 11x3

Fe3O4 + 11x4 FeO + 11x5 Fe + (x3 + x4 + 3x5) CO, (∀ x3, x4,

x5 ∈ R). (4.51)

49o If x1 > (15x3 + 4x4 + x5)/11, then from (4.46) follows

(4.48).

50o If x1 < (15x3 + 4x4 + x5)/11, then from (4.46) one

obtains (4.49).

51o If x1 = (18x3 + 5x4 + 2x5)/13, then (4.48) transforms

into (4.50).

52o If x1 > (18x3 + 5x4 + 2x5)/13, then holds (4.48).

53o If x1 < (18x3 + 5x4 + 2x5)/13, then from (4.48) fol-

lows (4.49).

54o If x1 = (3x3 + x4 + x5)/2, then from (4.48) one obtains

(4.47).

55o If x1 > (3x3 + x4 + x5)/2, then holds (4.48).

56o If x1 < (3x3 + x4 + x5)/2, then from (4.48) follows (4.49).

57o If x1 = (15x3 + 4x4 + x5)/11, then (4.48) transforms

into (4.51).

58o If x1 > (15x3 + 4x4 + x5)/11, then holds (4.48).

59o If x1 < (15x3 + 4x4 + x5)/11, then from (4.48) follows (4.49).

60o If x1 = (3x3 + x4 + x5)/2, then (4.49) transforms into (4.47).

61o If x1 > (3x3 + x4 + x5)/2, then from (4.49) one obtains (4.48).

62o If x1 < (3x3 + x4 + x5)/2, then holds (4.49).

63o If x1 = (15x3 + 4x4 + x5)/11, then (4.49) becomes (4.51).

64o If x1 > (15x3 + 4x4 + x5)/11, then from (4.49) one

obtains (4.48).

65o If x1 < (15x3 + 4x4 + x5)/11, then holds (4.49).

66o If x1 = (18x3 + 5x4 + 2x5)/13, then from (4.49) fol-

lows (4.50).

67o If x1 > (18x3 + 5x4 + 2x5)/13, then from (4.49) one

obtains (4.48).

68o If x1 < (18x3 + 5x4 + 2x5)/13, then holds (4.49).

69o If x1 = (3x3 + x4 + x5)/2, then from (4.43) follows (4.47).

70o If x1 > (3x3 + x4 + x5)/2, then from (4.43) one obtains (4.48).

71o If x1 < (3x3 + x4 + x5)/2, then (4.43) becomes (4.49).

72o If x1 = (18x3 + 5x4 + 2x5)/13, then (4.43) transforms

into (4.50).

73o If x1 > (18x3 + 5x4 + 2x5)/13, then from (4.43) fol-

lows (4.48).

74o If x1 < (18x3 + 5x4 + 2x5)/13, then from (4.43) one

obtains (4.49).

75o If x1 = (15x3 + 4x4 + x5)/11, then from (4.43) follows (4.51).

76o If x1 > (15x3 + 4x4 + x5)/11, then (4.43) transforms

into (4.46).
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77o If x1 < (15x3 + 4x4 + x5)/11, then from (4.43) follows (4.49).

If x3 = 0, then from (4.6) one obtains this particular reaction

3x1 Fe2O3 + 3x2 C → 3x4 FeO + 3x5 Fe + (2x1 – x4 – x5)

Fe3C + (– 13x1 + 6x2 + 5x4 + 2x5) CO + (11x1 – 3x2 – 4x4 –

x5) CO2, (4.52)

where x1, x2, x4 and x5 are arbitrary real numbers.

From (4.52) one obtains this system of inequalities

2x1 – x4 – x5 > 0, – 13x1 + 6x2 + 5x4 + 2x5 > 0, 11x1 – 3x2 –

4x4 – x5 > 0, (4.53)

or

3x2 < 11x1 – 4x4 – x5 < 6x2, (4.54)

where x1, x2, x4 and x5 are arbitrary real numbers.

The inequality (4.54) is a necessary and sufficient con-

dition to hold the reaction (4.52). 

78o If x1 = (x4 + x5)/2, then from (4.52) one obtains this

particular reaction

(x4 + x5) Fe2O3 + 2x2 C 2x4 FeO + 2x5 Fe + (4x2 – x4 – 3x5)

CO + (– 2x2 + x4 + 3x5) CO2, (4.55)

where x2, x4 and x5 are arbitrary real numbers.

79o If x1 > (x4 + x5)/2, then from (4.52) follows

3x1 Fe2O3 + 3x2 C + (13x1 – 6x2 – 5x4 – 2x5) CO → 3x4

FeO + 3x5 Fe + (2x1 – x4 – x5) Fe3C + (11x1 – 3x2 – 4x4 – x5)

CO2, (4.56)

where x1, x2, x4 and x5 are arbitrary real numbers.

80o If x1 < (x4 + x5)/2, then from (4.52) one obtains

3x1 Fe2O3 + (– 2x1 + x4 + x5) Fe3C + 3x2 C + (– 11x1 + 3x2

+ 4x4 + x5) CO2 → 3x4 FeO + 3x5 Fe + (– 13x1 + 6x2 + 5x4 +

2x5) CO,  (4.57)

where x1, x2, x4 and x5 are arbitrary real numbers.

81o If x1 = (6x2 + 5x4 + 2x5)/13, then from (4.52) follows

this reaction

(6x2 + 5x4 + 2x5) Fe2O3 + 13x2 C → 13x4 FeO + 13x5 Fe

+ (4x2 – x4 – 3x5) Fe3C + (9x2 + x4 + 3x5) CO2, (4.58)

where x2, x4 and x5 are arbitrary real numbers.

The reaction (4.58) has the following three subgener-

ators

 
6x2 + 5x4 + 2x5 > 0, 4x2 – x4 – 3x5 > 0, 9x2 + x4 + 3x5 > 0.

A necessary and sufficient condition to hold the above

inequalities and the reaction (4.58) is

x2 > (x4 + 3x5)/4.

82o If x1 > (6x2 + 5x4 + 2x5)/13, then (4.52) becomes

3x1 Fe2O3 + 3x2 C + (– 2x1 + x4 + x5) Fe3C + (13x1 – 6x2 –

5x4 – 2x5) CO → 3x4 FeO + 3x5 Fe + (11x1 – 3x2 – 4x4 – x5)

CO2, (4.59)

where x1, x2, x4 and x5 are arbitrary real numbers.

The reaction (4.59) contains these subgenerators

– 2x1 + x4 + x5 > 0, 13x1 – 6x2 – 5x4 – 2x5 > 0, 11x1 – 3x2 –

4x4 – x5 > 0.

The reaction (4.59) is possible if and only if are satis-

fied the above three inequalities and if and only if this ine-

quality holds

x2 < (11x1 – 4x4 – x5)/6.

83o If x1 < (6x2 + 5x4 + 2x5)/13, then from (4.52) one

obtains 

3x1 Fe2O3 + 3x2 C + (– 2x1 + x4 + x5) Fe3C + (– 11x1 + 3x2

+ 4x4 + x5) CO2 → 3x4 FeO + 3x5 Fe + (– 13x1 + 6x2 + 5x4 +

2x5) CO, (4.60)

where x1, x2, x4 and x5 are arbitrary real numbers.

From the reaction (4.60) follows this system of inequalities

– 2x1 + x4 + x5 > 0, – 11x1 + 3x2 + 4x4 + x5 > 0, – 13x1 +

6x2 + 5x4 + 2x5 > 0.

The above system of inequalities is satisfied if and only if

x1 < (x4 + x5)/2,

where x1, x2, x4 and x5 are arbitrary real numbers.

Last inequality is a necessary and sufficient condition to

hold the reaction (4.60).

84o If x1 = (3x2 + 4x4 + x5)/11, then from (4.52) follows

this particular reaction

(3x2 + 4x4 + x5) Fe2O3 + 11x2 C → 11x4 FeO + 11x5 Fe +

(2x2 – x4 – 3x5) Fe3C + (9x2 + x4 + 3x5) CO, (4.61)

where x2, x4 and x5 are arbitrary real numbers.

The reaction (4.61) holds if and only if this inequality is

satisfied

x2 > (x4 + 3x5)/2.

85o If x1 > (3x2 + 4x4 + x5)/11, then the reaction (4.52)

transforms into (4.59). 

86o If x1 < (3x2 + 4x4 + x5)/11, then from (4.52) one

obtains (4.60). 

Let’s consider (4.55). This reaction contains the following

two subgenerators 4x2 – x4 – 3x5 > 0 and – 2x2 + x4 + 3x5 > 0.

From them immediately follows

2x2 < x4 + 3x5 < 4x2, (4.62)

The inequality (4.62) is a necessary and sufficient con-
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dition to hold (4.55).

87o If x2 = (x4 + 3x5)/4, then (4.55) transforms into

(4x4 + 4x5) Fe2O3 + (2x4 + 6x5) C → 8x4 FeO + 8x5 Fe +

(2x4 + 6x5) CO2, (∀ x4, x5 ∈ R). (4.63)

88o If x2 > (x4 + 3x5)/4, then from (4.55) one obtains 

(x4 + x5) Fe2O3 + 2x2 C + (2x2 – x4 – 3x5) CO2 → 2x4 FeO

+ 2x5 Fe + (4x2 – x4 – 3x5) CO, (4.64)

where x2, x4 and x5 are arbitrary real numbers.

89o If x2 < (x4 + 3x5)/4, then from (4.55) follows

(x4 + x5) Fe2O3 + 2x2 C + (– 4x2 + x4 + 3x5) CO → 2x4

FeO + 2x5 Fe + (– 2x2 + x4 + 3x5) CO2, (4.65)

where x2, x4 and x5 are arbitrary real numbers.

90o If x2 = (x4 + 3x5)/2, then (4.55) becomes

(x4 + x5) Fe2O3 + (x4 + 3x5) C → 2x4 FeO + 2x5 Fe + (x4 +

3x5) CO, (4.66)

91o If x2 > (x4 + 3x5)/2, then (4.55) transforms into

(4.64).

92° If x2 < (x4 + 3x5)/2, then from (4.55) follows (4.65).

Now, we shall consider the reaction (4.56). This reac-

tion contains the following three subgenerators 13x1 – 6x2

– 5x4 – 2x5, 2x1 – x4 – x5 and 11x1 – 3x2 – 4x4 – x5. Accord-

ing to the Definition (2.13), immediately follows this sys-

tem of inequalities

13x1 – 6x2 – 5x4 – 2x5 > 0, 2x1 – x4 – x5 > 0, 11x1 – 3x2 –

4x4 – x5 > 0, (4.67)

or

13x1 – 5x4 – 2x5 > 6x2,  (4.68)

where x1, x2, x4 and x5 are arbitrary real numbers.

The expression (4.68) is a necessary and sufficient con-

dition to hold the reaction (4.56). 

93o If x1 = (6x2 + 5x4 + 2x5)/13, then from (4.56) one

obtains (4.58).

94o If x1 > (6x2 + 5x4 + 2x5)/13, then (4.56) transforms

into (4.59).

95o If x1 < (6x2 + 5x4 + 2x5)/13, then (4.56) becomes (4.60).

96o If x1 = (x4 + x5)/2, then from (4.56) one obtains (4.55).

97o If x1 > (x4 + x5)/2, then (4.56) holds if (4.68) is satisfied.

98o If x1 < (x4 + x5)/2, then (4.56) becomes (4.57).

99o If x1 = (3x2 + 4x4 + x5)/11, then from (4.56) follows (4.61).

100o If x1 > (3x2 + 4x4 + x5)/11, then (4.56) becomes (4.59).

101o If x1 < (3x2 + 4x4 + x5)/11, then from (4.56) follows (4.60).

Let’s consider the reaction (4.57). From this reaction

follows the system of inequalities

– 2x1 + x4 + x5 > 0, – 11x1 + 3x2 + 4x4 + x5 > 0, – 13x1 +

6x2 + 5x4 + 2x5 > 0. (4.69)

The system of inequalities (4.69) holds if and only if 

x1 < (3x2 + 4x4 + x5)/13,  (4.70)

where x1, x2, x4 and x5 are arbitrary real numbers.

The inequality (4.70) is a necessary and sufficient con-

dition to hold the reaction (4.57).

Next, we shall consider particular cases of (4.57).

102o If x1 = (x4 + x5)/2, then from (4.57) one obtains (4.64). 

103o If x1 > (x4 + x5)/2, then (4.57) transforms into

3x1 Fe2O3 + 3x2 C + (– 11x1 + 3x2 + 4x4 + x5) CO2 → 3x4

FeO + 3x5 Fe + (2x1 – x4 – x5) Fe3C + (– 13x1 + 6x2 + 5x4 +

2x5) CO,  (4.71)

where x1, x2, x4 and x5 are arbitrary real numbers.

104o If x1 < (x4 + x5)/2, then the reaction (4.57) holds.

105o If x1 = (3x2 + 4x4 + x5)/11, then from (4.57) one

obtains (4.61). 

106o If x1 > (3x2 + 4x4 + x5)/11, then (4.57) transforms

into (4.59).

107o If x1 < (3x2 + 4x4 + x5)/11, then from (4.57) follows (4.60).

108o If x1 = (6x2 + 5x4 + 2x5)/13, then from (4.57) one

obtains (4.58).

109o If x1 > (6x2 + 5x4 + 2x5)/13, then from (4.57) fol-

lows (5.59).

110o If x1 < (6x2 + 5x4 + 2x5)/13, then (4.57) transforms

into (4.60).

If x4 = 0, then from (4.6) one obtains this particular reaction

3x1 Fe2O3 + 3x2 C → 3x3 Fe3O4 + 3x5 Fe + (2x1 – 3x3 – x5)

Fe3C + (– 13x1 + 6x2 + 18x3 + 2x5) CO + (11x1 – 3x2 – 15x3

– x5) CO2, (4.72)

where x1, x2, x3 and x5 are arbitrary real numbers.

From (4.72) one obtains this system of inequalities

2x1 – 3x3 – x5 > 0, – 13x1 + 6x2 + 18x3 + 2x5 > 0, 11x1 –

3x2 – 15x3 – x5 > 0, (4.73)

or

3x2 < 11x1 – 15x3 – x5 < 6x2, (4.74)

where x1, x2, x3 and x5 are arbitrary real numbers.

The inequality (4.74) is a necessary and sufficient con-

dition to hold the reaction (4.72). 

111o If x1 = (3x3 + x5)/2, then (4.72) transforms into

(3x3 + x5) Fe2O3 + 2x2 C → 2x3 Fe3O4 + 2x5 Fe + (4x2 – x3

– 3x5) CO + (– 2x2 + x3 + 3x5) CO2, (4.75)

where x2, x3 and x5 are arbitrary real numbers.
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Reaction (4.75) is possible if and only if holds the fol-

lowing inequality

2x2 < x3 + 3x5 < 4x2,  (4.76)

The inequality (4.76) is a necessary and sufficient con-

dition to hold (4.75).

112o If x2 = (x3 + 3x5)/4, then (4.75) obtains this form

(6x3 + 2x5) Fe2O3 + (x3 + 3x5) C → 4x3 Fe3O4 + 4x5 Fe +

(x3 + 3x5) CO2, (∀ x3, x5 ∈ R). (4.77)

113o If x2 > (x3 + 3x5)/4 then (4.75) transforms into

(3x3 + x5) Fe2O3 + 2x2 C + (2x2 – x3 – 3x5) CO2  2x3 Fe3O4

+ 2x5 Fe + (4x2 – x3 – 3x5) CO, (4.78)

where x2, x3 and x5 are arbitrary real numbers.

The above reaction is possible if and only if holds this

inequality

2x2 > x3 + 3x5. (4.79)

The inequality (4.79) is a necessary and sufficient con-

dition to hold (4.78).

114o If x2 < (x3 + 3x5)/4, then from (4.75) one obtains

(3x3 + x5) Fe2O3 + 2x2 C + (– 4x2 + x3 + 3x5) CO → 2x3

Fe3O4 + 2x5 Fe + (– 2x2 + x3 + 3x5) CO2, (4.80)

where x2, x3 and x5 are arbitrary real numbers.

The reaction (4.80) is possible if and only if holds the

following inequality

x3 + 3x5 > 4x2.  (4.81)

The inequality (4.81) is a necessary and sufficient con-

dition to hold (4.80).

115o If x2 = (x3 + 3x5)/2, then from (4.75) follows

(3x3 + x5) Fe2O3 + (x3 + 3x5) C → 2x3 Fe3O4 + 2x5 Fe +

(x3 + 3x5) CO, (∀ x3, x5 ∈ R). (4.82)

116o If x2 > (x3 + 3x5)/2, then (4.75) becomes (4.78).

117o If x2 < (x3 + 3x5)/2, then (4.75) holds.

118o If x1 > (3x3 + x5)/2, then (4.72) holds.

119o If x1 < (3x3 + x5)/2, then from (4.72) one obtains

3x1 Fe2O3 + 3x2 C + (– 2x1 + 3x3 + x5) Fe3C → 3x3 Fe3O4

+ 3x5 Fe + (– 13x1 + 6x2 + 18x3 + 2x5) CO + (11x1 – 3x2 –

15x3 – x5) CO2, (4.83)

where x1, x2, x3 and x5 are arbitrary real numbers.

The reaction (4.83) is possible if and only if the ine-

quality (4.74) is satisfied.

120o If x1 = (6x2 + 18x3 + 2x5)/13, then (4.72) becomes

(6x2 + 18x3 + 2x5) Fe2O3 + 13x2 C → 13x3 Fe3O4 + 13x5

Fe + (4x2 – x3 – 3x5) Fe3C + (9x2 + x3 + 3x5) CO2, (4.84)

where x2, x3 and x5 are arbitrary real numbers.

From the above reaction (4.84) one obtains this system

of inequalities

6x2 + 18x3 + 2x5 > 0, 4x2 – x3 – 3x5 > 0, 9x2 + x3 + 3x5 > 0.

(4.85)

From (4.85) immediately follows this inequality

x3 + 3x5 < 4x2,  (4.86)

which is a necessary and sufficient condition to hold

(4.84).

121o If x2 = (x3 + 3x5)/4, then (4.84) obtains this form

(6x3 + 2x5) Fe2O3 + (x3 + 3x5) C → 4x3 Fe3O4 + 4x5 Fe +

(x3 + 3x5) CO2, (∀ x3, x5 ∈ R). (4.85)

122o If x2 > (x3 + 3x5)/4, then (4.84) holds.

123o If x2 < (x3 + 3x5)/4, then from (4.84) follows

(6x2 + 18x3 + 2x5) Fe2O3 + 13x2 C + (– 4x2 + x3 + 3x5)

Fe3C → 13x3 Fe3O4 + 13x5 Fe + (9x2 + x3 + 3x5) CO2, (4.86)

where x2, x3 and x5 are arbitrary real numbers.

124o If x1 > (6x2 + 18x3 + 2x5)/13, then (4.72) transforms into

3x1 Fe2O3 + 3x2 C + (13x1 – 6x2 – 18x3 – 2x5) CO → 3x3

Fe3O4 + 3x5 Fe + (2x1 – 3x3 – x5) Fe3C + (11x1 – 3x2 – 15x3

– x5) CO2, (4.87)

where x1, x2, x3 and x5 are arbitrary real numbers.

From (4.87) follows this system of inequalities

13x1 – 6x2 – 18x3 – 2x5 > 0, 2x1 – 3x3 – x5 > 0, 11x1 – 3x2 –

15x3 – x5 > 0, (4.88)

or

13x1 – 18x3 – 2x5 > 6x2,  (4.89)

where x1, x2, x3 and x5 are arbitrary real numbers.

The inequality (4.89) is a necessary and sufficient con-

dition to hold the reaction (4.87). 

125o If x1 < (6x2 + 18x3 + 2x5)/13, then from (4.72) one

obtains

3x1 Fe2O3 + 3x2 C + (– 2x1 + 3x3 + x5) Fe3C + (– 11x1 +

3x2 + 15x3 + x5) CO2 → 3x3 Fe3O4 + 3x5 Fe + (– 13x1 + 6x2

+ 18x3 + 2x5) CO, (4.90)

where x1, x2, x3 and x5 are arbitrary real numbers.

From (4.90) one obtains this system of inequalities

– 2x1 + 3x3 + x5 > 0, – 11x1 + 3x2 + 15x3 + x5 > 0, – 13x1 +

6x2 + 18x3 + 2x5 > 0. (4.91)
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or

x1 < (6x2 + 18x3 + 2x5)/13, (4.92)

where x1, x2, x3 and x5 are arbitrary real numbers.

The inequality (4.92) is a necessary and sufficient con-

dition to hold the reaction (4.91). 

126o If x1 = (3x2 + 15x3 + x5)/11, then from (4.72) fol-

lows this reaction 

(3x2 + 15x3 + x5) Fe2O3 + 11x2 C → 11x3 Fe3O4 + 11x5 Fe

+ (2x2 – x3 – 3x5) Fe3C + (9x2 + x3 + 3x5) CO, (4.93)

where x2, x3 and x5 are arbitrary real numbers.

Reaction (4.93) is possible if and only if holds this inequality

x2 > (x3 + 3x5)/2. (4.94)

Actually, the inequality (4.94) is a necessary and suf-

ficient condition to hold (4.93).

127o If x1 = (x3 + 3x5)/2, then (4.93) becomes (4.82).

128o If (4.94) holds, then holds (4.93) too.

129o If x2 < (x3 + 3x5)/2, then (4.93) transforms into

(3x2 + 15x3 + x5) Fe2O3 + 11x2 C + (– 2x2 + x3 + 3x5) Fe3C

→ 11x3 Fe3O4 + 11x5 Fe + (9x2 + x3 + 3x5) CO, (4.95)

where x2, x3 and x5 are arbitrary real numbers.

130o If x1 > (3x2 + 15x3 + x5)/11, then (4.72) becomes 

3x1 Fe2O3 + 3x2 C + (– 2x1 + 3x3 + x5) Fe3C → 3x3 Fe3O4

+ 3x5 Fe + (– 13x1 + 6x2 + 18x3 + 2x5) CO + (11x1 – 3x2 –

15x3 – x5) CO2, (4.96)

where x1, x2, x3 and x5 are arbitrary real numbers.

The subgenerators of the reaction (4.96) are given by

the following expression

– 2x1 + 3x3 + x5 > 0, – 13x1 + 6x2 + 18x3 + 2x5 > 0, 11x1 –

3x2 – 15x3 – x5 > 0. (4.97)

A necessary and sufficient condition to hold the ine-

qualities (4.97) and the reaction (4.96) is 

x1 > (3x2 + 15x3 + 5x5)/11. (4.98)

131o If x1 < (3x2 + 15x3 + x5)/11, then (4.72) transforms into

3x1 Fe2O3 + 3x2 C + (– 2x1 + 3x3 + x5) Fe3C + (– 11x1 +

3x2 + 15x3 + x5) CO2 → 3x3 Fe3O4 + 3x5 Fe + (– 13x1 + 6x2

+ 18x3 + 2x5) CO, (4.99)

where x1, x2, x3 and x5 are arbitrary real numbers.

From the reaction (4.99) immediately follows this sys-

tem of inequalities

– 2x1 + 3x3 + x5 > 0, – 11x1 + 3x2 + 15x3 + x5 > 0, – 13x1 +

6x2 + 18x3 + 2x5 > 0. (4.100)

The system of inequalities (4.100) holds if and only if

this inequality is satisfied

x1 < (6x2 + 18x3 + 2x5)/13, (4.101)

where x1, x2, x3 and x5 are arbitrary real numbers.

If x5 = 0, then from (4.6) one obtains this particular reaction

3x1 Fe2O3 + 3x2 C → 3x3 Fe3O4 + 3x4 FeO + (2x1 – 3x3 –

x4) Fe3C + (– 13x1 + 6x2 + 18x3 + 5x4) CO + (11x1 – 3x2 –

15x3 – 4x4) CO2, (4.102)

where x1, x2, x3 and x4 are arbitrary real numbers.

From (4.102) follows this system of inequalities

2x1 – 3x3 – x4 > 0, – 13x1 + 6x2 + 18x3 + 5x4 > 0, 11x1 –

3x2 – 15x3 – 4x4 > 0. (4.103)

or

3x2 < 11x1 – 15x3 – 4x4 < 6x2, (4.104)

where x1, x2, x3 and x4 are arbitrary real numbers.

The inequality (4.104) is a necessary and sufficient con-

dition to hold the reaction (4.102). 

Now we shall consider some particular cases of (4.102).

132o If x1 = (3x3 + x4)/2, then (4.102) transforms into

(3x3 + x4) Fe2O3 + 2x2 C → 2x3 Fe3O4 + 2x4 FeO + (4x2 –

x3 – x4) CO + (– 2x2 + x3 + x4) CO2, (4.105)

where x2, x3 and x4 are arbitrary real numbers.

The reaction (4.105) is possible if and only if this ine-

quality holds

2x2 < x3 + x4 < 4x2. (4.106)

133o If x2 = (x3 + x4)/4, then from (4.105) one obtains

(6x3 + 2x4) Fe2O3 + (x3 + x4) C → 4x3 Fe3O4 + 4x4 FeO +

(x3 + x4) CO2, (∀ x3, x4 ∈ R). (4.107)

134o If x2 > (x3 + x4)/4, then the reaction (4.105) holds.

135o If x2 < (x3 + x4)/4, then the reaction (4.105) trans-

forms into this form

(3x3 + x4) Fe2O3 + 2x2 C + (– 4x2 + x3 + x4) CO → 2x3

Fe3O4 + 2x4 FeO + (– 2x2 + x3 + x4) CO2, (4.108)

where x2, x3 and x4 are arbitrary real numbers.

A necessary and sufficient condition to hold the reac-

tion (4.108) is to be satisfied this inequality 

x3 + x4 > 4x2.  (4.109)

136o If x2 = (x3 + x4)/2, then the reaction (4.105) reduces

to this particular reaction
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(3x3 + x4) Fe2O3 + (x3 + x4) C → 2x3 Fe3O4 + 2x4 FeO +

(x3 + x4) CO, (∀ x3, x4 ∈ R). (4.110)

137o If x2 > (x3 + x4)/2, then (4.105) becomes

(3x3 + x4) Fe2O3 + 2x2 C + (2x2 – x3 – x4) CO2 → 2x3

Fe3O4 + 2x4 FeO + (4x2 – x3 – x4) CO, (4.111)

where x2, x3 and x4 are arbitrary real numbers.

The reaction (4.111) is possible if and only if is satisfied

this inequality

x3 + x4 < 2x2.  (4.112)

138o If x2 < (x3 + x4)/2, then from (4.105) one obtains

(3x3 + x4) Fe2O3 + 2x2 C + (– 4x2 + x3 + x4) CO → 2x3

Fe3O4 + 2x4 FeO + (– 2x2 + x3 + x4) CO2, (4.113)

where x2, x3 and x4 are arbitrary real numbers.

The reaction (4.113) is possible if and only if this ine-

quality is satisfied

x3 + x4 > 4x2.  (4.114)

139o If x1 > (3x3 + x4)/2, then (4.102) holds.

140o If x1 < (3x3 + x4)/2, then from (4.102) one obtains

3x1 Fe2O3 + 3x2 C + (– 2x1 + 3x3 + x4) Fe3C + (– 11x1 +

3x2 + 15x3 + 4x4) CO2 → 3x3 Fe3O4 + 3x4 FeO + (– 13x1 +

6x2 + 18x3 + 5x4) CO , (4.115)

where x1, x2, x3 and x4 are arbitrary real numbers.

The reaction (4.115) holds if and only if this inequality

is satisfied

x1 < (3x2 + 15x3 + 4x4)/11, (4.116)

where x1, x2, x3 and x4 are arbitrary real numbers.

141o If x1 = (6x2 + 18x3 + 5x4)/13, then from (4.102) one

obtains

(6x2 + 18x3 + 5x4) Fe2O3 + 13x2 C → 13x3 Fe3O4 + 13x4

FeO + (4x2 – x3 – x4) Fe3C + (9x2 + x3 + x4) CO2, (4.117)

where x2, x3 and x4 are arbitrary real numbers.

The reaction (4.117) is possible if and only if the fol-

lowing inequality is satisfied

4x2 > x3 + x4.  (4.118)

142o If x2 = (x3 + x4)/4, then (4.117) becomes (4.107).

143o If x1 > (6x2 + 18x3 + 5x4)/13, then from (4.102) fol-

lows

3x1 Fe2O3 + 3x2 C + (13x1 – 6x2 – 18x3 – 5x4) CO → 3x3

Fe3O4 + 3x4 FeO + (2x1 – 3x3 – x4) Fe3C + (11x1 – 3x2 –

15x3 – 4x4) CO2, (4.118)

where x1, x2, x3 and x4 are arbitrary real numbers.

The reaction (4.118) holds if and only if this inequality

is satisfied

13x1 – 18x3 – 5x4 > 6x2,  (4.119)

where x1, x2, x3 and x5 are arbitrary real numbers.

144o If x1 < (6x2 + 18x3 + 5x4)/13, then (4.102) becomes

3x1 Fe2O3 + 3x2 C + (– 2x1 + 3x3 + x4) Fe3C + (– 11x1 +

3x2 + 15x3 + 4x4) CO2 → 3x3 Fe3O4 + 3x4 FeO + (– 13x1 +

6x2 + 18x3 + 5x4) CO, (4.120)

where x1, x2, x3 and x4 are arbitrary real numbers.

The reaction (4.120) is possible if and only if this ine-

quality is satisfied

x1 < (3x2 + 15x3 + 4x4)/11, (4.121)

where x1, x2, x3 and x4 are arbitrary real numbers.

145o If x1 = (3x2 + 15x3 + 4x4)/11, then from (4.102) one

obtains

(3x2 + 15x3 + 4x4) Fe2O3 + 11x2 C → 11x3 Fe3O4 + 11x4

FeO + (2x2 – x3 – x4) Fe3C + (9x2 + x3 + x4) CO, (4.122)

where x2, x3 and x4 are arbitrary real numbers.

The above reaction (4.122) has only one subgenerator

2x2 – x3 – x4, that means that it is possible if and only if 

x2 > (x3 + x4)/2.  (4.123)

146o If x2 = (x3 + x4)/2, then (4.122) becomes (4.110).

147o If x1 > (3x2 + 15x3 + 4x4)/11, then (4.102) holds.

148o If x1 < (3x2 + 15x3 + 4x4)/11, then (4.102) becomes

3x1 Fe2O3 + 3x2 C + (– 2x1 + 3x3 + x4) Fe3C + (– 11x1 +

3x2 + 15x3 + 4x4) CO2 → 3x3 Fe3O4 + 3x4 FeO + (– 13x1 +

6x2 + 18x3 + 5x4) CO, (4.124)

where x1, x2, x3 and x4 are arbitrary real numbers.

The reaction (4.124) holds if and only if the inequality

(4.116) is satisfied.

By this we shall finish this section, where we consid-

ered some of the important particular cases.

AN EXTENTION OF THE RESULTS

In this section we shall extend topological and chemical

results obtained in the previous section. Actually, here we

shall develop an explicite topological calculus for the

coefficients of the chemical reaction (4.6) for an another

topology and will be considered balancing of the chem-

ical reaction (5.3) which posses atoms with fractional oxi-

dation numbers. Also for the reaction (5.6) we shall
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develop a comprehensive topological calculus. 

First, for the reaction (4.6) we shall consider the topology

g  = {X, ∅, {3x1}, {3x1, 3x5}, {3x1, 2x1 – 3x3 – x4 – x5, –

13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x1, 3x5, 2x1 – 3x3 – x4 – x5,

– 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x1, 3x5, 11x1 – 3x2 –

15x3 – 4x4 – x5}}, (5.1)

on

X = {3x1, 3x5, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4

+ 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, (5.2)

where xi, (1 ≤ i ≤ 5) are arbitrary real numbers.

Now, we shall determine 

1o the derived sets of Y = {2x1 – 3x3 – x4 – x5, – 13x1 + 6x2

+ 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5} and Z = {3x5},

2o the closed subsets of X,

3o the closure of the sets {3x1}, {3x5} and {2x1 – 3x3 – x4

– x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, 

4o which sets in 3° are dense in X? 

5o the interior points of the subset T = {3x1, 3x5, 2x1 – 3x3

– x4 – x5} of X,

6o the exterior points of T,

7o the boundary points of T,

8o the neighborhoods of the point 11x1 – 3x2 – 15x3 – 4x4

– x5 and of the point 2x1 – 3x3 – x4 – x5,

9o the members of the relative topology g S on S = {3x1,

2x1 – 3x3 – x4 – x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}.

Let’s go forward.

1o Note that {3x1, 3x5} and {3x1, 3x5, 11x1 – 3x2 – 15x3 –

4x4 – x5} are open subsets of X and that

3x1, 3x5 ∈ {3x1, 3x5}

and

{3x1, 3x5} ∩ Y = ∅, 11x1 – 3x2 – 15x3 – 4x4 – x5 ∈ {3x1,

3x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}

and 

{3x1, 3x5, 11x1 – 3x2 – 15x3 – 4x4 – x5} ∩ Y = {11x1 – 3x2

– 15x3 – 4x4 – x5}.

Hence 3x1, 3x5 and 11x1 – 3x2 – 15x3 – 4x4 – x5 are not

limit point of Y. On the other hand, every other point in X

is a limit point of Y since every open set containing it also

contains a point of Y different from it. Accordingly, 

Y’ = {2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}.

Note that {3x1}, {3x1, 3x5} and {3x1, 2x1 – 3x3 – x4 – x5, –

13x1 + 6x2 + 18x3 + 5x4 + 2x5} are open subsets of X and that

3x1 ∈ {3x1} and {3x1} ∩ Z = ∅, 3x5 ∈ {3x1, 3x5} and

{3x1, 3x5} ∩ Z = {3x5}, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 +

18x3 + 5x4 + 2x5 ∈ {3x1, 2x1 – 3x3 – x4 – x5,  – 13x1 + 6x2 +

18x3 + 5x4 + 2x5} and {3x1, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2

+ 18x3 + 5x4 + 2x5} ∩ Z = ∅.

Hence 3x1, 3x5, 2x1 – 3x3 – x4 – x5 and – 13x1 + 6x2 + 18x3

+ 5x4 + 2x5 are not limit point of Z = {3x5}. But 11x1 – 3x2 –

15x3 – 4x4 – x5 is a limit point of Z since the open sets con-

taining 11x1 – 3x2 – 15x3 – 4x4 – x5 are {3x1, 3x5, 11x1 – 3x2

– 15x3 – 4x4 – x5} and X and each contains the point 3x5 ∈

Z different from 11x1 – 3x2 – 15x3 – 4x4 – x5. Thus Z’ =

{11x1 – 3x2 – 15x3 – 4x4 – x5}. 

2o A set is closed if and only if its complement is open.

Hence write the complement of each set in g : 

∅, X, {3x5, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {2x1 – 3x3 – x4 – x5, – 13x1

+ 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {11x1 – 3x2 – 15x3 – 4x4 – x5},

{2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}.

3o The closure Cl{X} of any set X is the intersection of

all closed supersets of X. 

The only closed superset of {3x1} is X; the closed super-

sets of {3x5} are 

{3x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x5, 2x1 – 3x3 – x4 –

x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 –

x5} and X;

and the closed supersets of {2x1 – 3x3 – x4 – x5, 11x1 – 3x2 –

15x3 – 4x4 – x5} are {2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3

+ 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x5, 2x1 – 3x3 –

x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 –

4x4 – x5} and X.

Thus,

Cl{3x1} = X, Cl{3x5} = {3x5, 11x1 – 3x2 – 15x3 – 4x4 –

x5}, Cl{2x1 – 3x3 – x4 – x5, 11x1 – 3x2 – 15x3 – 4x4 – x5} =

{2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 –

3x2 – 15x3 – 4x4 – x5}.

4o A set Y is dense in X if and only if Cl{Y} = X; so

{3x1} is the only dense set.

5o The points 3x1 and 3x5 are interior points of T since

3x1, 3x5 ∈ {3x1, 3x5} ⊂ T = {3x1, 3x5, 2x1 – 3x3 – x4 – x5},

where {3x1, 3x5} is an open set, i.e., since each belongs to

an open set contained in T. Note that 2x1 – 3x3 – x4 – x5 is

not an interior point of T since 2x1 – 3x3 – x4 – x5 does not

belong to any open set contained in T. Hence Int{T} =

{3x1, 3x5} is the interior of T. 
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6o The complement of T is 

Tc = {– 13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 –

4x4 – x5}.

Neither – 13x1 + 6x2 + 18x3 + 5x4 + 2x5 nor 11x1 – 3x2 – 15x3

– 4x4 – x5 are interior points of Tc since neither belongs to

any open subset of Tc = {– 13x1 + 6x2 + 18x3 + 5x4 + 2x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}. Hence, Int{Tc} = ∅, i.e., there

are no exterior points of T.

7o The boundary Bd{T} of T consists of those points

which are neither interior nor exterior to T. So 

Bd{T} = {2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 +

2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}.

8o A neighborhood of 11x1 – 3x2 – 15x3 – 4x4 – x5 is any

superset of an open set containing 11x1 – 3x2 – 15x3 – 4x4 –

x5. The open sets containing 11x1 – 3x2 – 15x3 – 4x4 – x5 are

{3x1, 3x5, 11x1 – 3x2 – 15x3 – 4x4 – x5} and X. The super-

sets of {3x1, 3x5, 11x1 – 3x2 – 15x3 – 4x4 – x5} are {3x1, 3x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x5, 2x1 – 3x3 – x4 – x5,

11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x5, – 13x1 + 6x2 + 18x3

+ 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5} and X; the only

superset of X is X. Accordingly, the class of neighbor-

hoods of 11x1 – 3x2 – 15x3 – 4x4 – x5, i.e., neighborhood

system of 11x1 – 3x2 – 15x3 – 4x4 – x5 is

ap = {{3x1, 3x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x5,

2x1 – 3x3 – x4 – x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, {3x1, 3x5, –

13x1 + 6x2 + 18x3 + 5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, X}.

The open sets containing 2x1 – 3x3 – x4 – x5 are {3x1, 2x1

– 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5}, {3x1, 3x5,

2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5} and X.

Hence the neighborhood system of 2x1 – 3x3 – x4 – x5 is

a p’ = {{3x1, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 + 5x4

+ 2x5}, {3x1, 3x5, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 +

5x4 + 2x5}, {3x1, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3 +

5x4 + 2x5, 11x1 – 3x2 – 15x3 – 4x4 – x5}, X}.

9o g S = {S ∩ G| G ∈ g  }, so the members of g S are

S ∩ X = S, S ∩ {3x1} = {3x1}, S ∩ {3x1, 2x1 – 3x3 – x4 –

x5, – 13x1 + 6x2 + 18x3 + 5x4 + 2x5} = {3x1, 2x1 – 3x3 – x4 –

x5}, S ∩ {3x1, 3x5, 11x1 – 3x2 – 15x3 – 4x4 – x5} = {3x1, 11x1

– 3x2 – 15x3 – 4x4 – x5}, S ∩ ∅ = ∅, S ∩ {3x1, 3x5} =

{3x1}, S ∩ {3x1, 3x5, 2x1 – 3x3 – x4 – x5, – 13x1 + 6x2 + 18x3

+ 5x4 + 2x5} = {3x1, 2x1 – 3x3 – x4 – x5}.

In other words 

g S = {S, ∅, {3x1}, {3x1, 2x1 – 3x3 – x4 – x5}, {3x1, 11x1 –

3x2 – 15x3 – 4x4 – x5}},

where xi, (1 ≤ i ≤ 5) are arbitrary real numbers.

Observe that {3x1, 2x1 – 3x3 – x4 – x5} is not open in X,

but is relatively open in S, i.e., is T S – open. 

Now, we shall determine a minimal solution of the equa-

tion

x1 Fe2O3 + x2 C → x3 Fe3O4 + x4 Fe0.987O + x5 Fe + x6

Fe3C + x7 CO + x8 CO2, (5.3)

The scheme for the reaction (5.3) is

From the above scheme, follows reaction matrix

,

with a rankA = 3.

The Moore-Penrose matrix has this form 

A+ = AT(AAT)−1

By using the vector 

Fe2O3 C Fe3O4 Fe0.987O Fe Fe3C CO CO2

Fe 2 0 −3 −0.987 −1 −3 0 0

O 3 0 −4 −1 0 0 −1 −2

C 0 1 0 0 0 −1 −1 −1

=

−0.021161720706833494352

−0.026157471963011808991

−0.056038349990849239674

−0.033791543111127966681

−0.083468167145213741613

−0.224247029472629415850

0.074749009824209805283

0.123340547685407801570

0.092028392366251401914

−0.010859213626263351406

−0.106507343867935870450

−0.015110641493880042493

0.048591537861197996292

0.156633827209857340280

−0.052211275736619113427

−0.115281765099501578260

−0.084892584804813672200

0.277762514191956370300

0.121909270394088832600

0.036676638453756006880

0.026157471963011808991

−0.199290098302920943320

−0.266903300565693018890

−0.256044086939429667490

A
2  0 3– 0.987– 1– 3– 0 0

3 0 4– 1.000– 0 0 1– 2–

0 1 0 0.000 0 1– 1– 1–

=
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a = (1, 1, 1, 1, 1, 1, 1, 1)T,

as an arbitrary chosen vector, A and A+ determined pre-

viously, by virtue of (4.3) one obtains the minimal solu-

tion of the chemical equation (5.3) given by 

(1/1377.770759) × (x1, x2, x3, x4, x5, x6, x7, x8)
T,

where

x1 = 1952.372829, x2 = 1852.583871,

x3 = 517.7389990, x4 = 1096.003000,

x5 = 1096.083759, x6 = 57.89664700,

x7 = 899.2149570, x8 = 895.4722670.

Balanced equation (5.3) with minimal coefficients is

1952.372829 Fe2O3 + 1852.583871 C → 517.738999

Fe3O4 + 1096.003 Fe0.987O + 1096.083759 Fe + 57.896647

Fe3C + 899.214957 CO + 895.472267 CO2.

A particular case of reaction (5.3) for x1 = x2 = 0, x3 = – c1,

x4 = c3, x5, = x6 = 0, x7 = – c2 and x8 = c4 is considered in31.

Next, we shall look for sets of solutions of the reaction (5.3).

From (5.3) immediately follows this system of linear

equations

2 x1 = 3 x3 + 0.987 x4 + x5 + 3 x6, 

3 x1 = 4 x3 + x4 + x7 + 2 x8, 

x2 = x6 + x7 + x8, (5.4)

which general solution is

x1 = – 0.948 x4 – 4 x5 – 12 x6 + 3 x7 + 6 x8, x2 = x6 + x7 + x8,

x3 = – 0.961 x4 – 3 x5 – 9 x6 + 2 x7 + 4 x8, (5.5)

where x4, x5, x6, x7 and x8 are arbitrary real numbers.

Balanced chemical reaction (5.3) has this form

(– 0.948 x4 – 4 x5 – 12 x6 + 3 x7 + 6 x8) Fe2O3 + (x6 + x7 +

x8) C → (– 0.961 x4 – 3 x5 – 9 x6 + 2 x7 + 4 x8) Fe3O4 + x4

Fe0.987O + x5 Fe + x6 Fe3C + x7 CO + x8 CO2, (5.6)

where x4, x5, x6, x7 and x8 are arbitrary real numbers.

The reaction (5.6) holds if and only if

x7 + 2 x8 > 0.4805 x4 + 1.5 x5 + 4.5 x6, (5.7)

i.e., 

0 < x7 < 0.4805 x4 + 1.5 x5 + 4.5 x6, (5.8)

where x4, x5, x6 and x7 are arbitrary real numbers.

For instance, if x4 = x5 = x6 = 1, then from (5.8) one

obtains x7 < 6.4805. Let it be x7 = 6. Then from (5.7) fol-

lows x8 > 0.24025, i.e., x8 = 0.3. Now, the reaction (5.6)

will have this particular form

2.852 Fe2O3 + 7.3 C → 0.239 Fe3O4 + Fe0.987O + Fe +

Fe3C + 6 CO + 0.3 CO2.  (5.9)

For (5.6) we shall consider the topology of closed sets

g 11 = {X, ∅,  {– 0.948 x4 – 4 x5 – 12 x6 + 3 x7 + 6 x8},  {x6

+ x7 + x8}, {– 0.948 x4 – 4 x5 – 12 x6 + 3 x7 + 6 x8, x6 + x7 +

x8}, {x6 + x7 + x8, – 0.961 x4 – 3 x5 – 9 x6 + 2 x7 + 4 x8, x4},

{– 0.948 x4 – 4 x5 – 12 x6 + 3 x7 + 6 x8, x6 + x7 + x8, – 0.961

x4 – 3 x5 – 9 x6 + 2 x7 + 4 x8, x4}}, (5.10)

on

X = {– 0.948 x4 – 4 x5 – 12 x6 + 3 x7 + 6 x8, x6 + x7 + x8, –

0.961 x4 – 3 x5 – 9 x6 + 2 x7 + 4 x8, x4, x8},  (5.11)

where xi, (4 ≤ i ≤ 8) are arbitrary real numbers.

The above topology (5.10) on the set (5.11) is a col-

lection or class of subsets that obey the axioms of the Def-

inition 2.30.

The complements of the closed sets are defined as open

sets. The open sets of the topology are the collection of

subsets given by 

g 12 = {∅, X, {x6 + x7 + x8, – 0.961 x4 – 3 x5 – 9 x6 + 2 x7 +

4 x8, x4, x8}, {– 0.948 x4 – 4 x5 – 12 x6 + 3 x7 + 6 x8, – 0.961

x4 – 3 x5 – 9 x6 + 2 x7 + 4 x8, x4, x8}, {– 0.961 x4 – 3 x5 – 9 x6

+ 2 x7 + 4 x8, x4, x8}, {– 0.948 x4 – 4 x5 – 12 x6 + 3 x7 + 6 x8,

x8}, {x8}}. 

We would like to emphasize that the same set of all

combinations of subsets can support several topologies.

For instance, the subsets of the topology

g 21 = {X, ∅, {x6 + x7 + x8, – 0.961 x4 – 3 x5 – 9 x6 + 2 x7 +

4 x8, x4, x8}, {– 0.961 x4 – 3 x5 – 9 x6 + 2 x7 + 4 x8, x4, x8},

{x4, x8}}.

are closed. Hence g 21 is a different topology made on the

same set of points, X. The open sets of this topology are

g 22 = {∅, X, {– 0.948 x4 – 4 x5 – 12 x6 + 3 x7 + 6 x8}, {–

0.948 x4 – 4 x5 – 12 x6 + 3 x7 + 6 x8, x6 + x7 + x8}, {– 0.948 x4

– 4 x5 – 12 x6 + 3 x7 + 6 x8, x6 + x7 + x8, – 0.961 x4 – 3 x5 – 9

x6 + 2 x7 + 4 x8}}.

Actually, there are lots of different ways to define topol-

ogies. A subset can be open, or closed, or both, or neither

relative to a particular topology. For instance, with respect

to the topology given by the closed sets, 

g 31 = {X, ∅, {– 0.948 x4 – 4 x5 – 12 x6 + 3 x7 + 6 x8}, {x6

+ x7 + x8, – 0.961 x4 – 3 x5 – 9 x6 + 2 x7 + 4 x8, x4, x8}},

the set {x6 + x7 + x8, – 0.961 x4 – 3 x5 – 9 x6 + 2 x7 + 4 x8, x4,

x8} is both open and closed, and the set { x6 + x7 + x8, –

0.961 x4 – 3 x5 – 9 x6 + 2 x7 + 4 x8} is neither open nor closed.



2013, Vol. 57, No. 2

A New Topology of Solutions of Chemical Equations 201

The topology of closed sets given by this collection

g 41 = {X, ∅, {x6 + x7 + x8, – 0.961 x4 – 3 x5 – 9 x6 + 2 x7 +

4 x8, x4, x8}, {– 0.948 x4 – 4 x5 – 12 x6 + 3 x7 + 6 x8, x6 + x7 +

x8, x8}, {x6 + x7 + x8, x8}, {– 0.948 x4 – 4 x5 – 12 x6 + 3 x7 + 6

x8}},

has its dual as the topology of open sets

g 42 = {∅, X, {– 0.948 x4 – 4 x5 – 12 x6 + 3 x7 + 6 x8}, {–

0.961 x4 – 3 x5 – 9 x6 + 2 x7 + 4 x8, x4}, {– 0.948 x4 – 4 x5 –

12 x6 + 3 x7 + 6 x8, – 0.961 x4 – 3 x5 – 9 x6 + 2 x7 + 4 x8, x4},

{x6 + x7 + x8, – 0.961 x4 – 3 x5 – 9 x6 + 2 x7 + 4 x8, x4, x8}}.

Let X is given by (5.11) and let 

Y = {– 0.948 x4 – 4 x5 – 12 x6 + 3 x7 + 6 x8, x6 + x7 + x8,  –

0.961 x4 – 3 x5 – 9 x6 + 2 x7 + 4 x8}, {– 0.961 x4 – 3 x5 – 9 x6

+ 2 x7 + 4 x8, x4}, {x4, x8}}.

Now, we shall find a topology on X generated by Y.

First, we shall compute the class Z of all finite inter-

sections of sets in Y:

Z = {X, {– 0.948 x4 – 4 x5 – 12 x6 + 3 x7 + 6 x8, x6 + x7 +

x8, – 0.961 x4 – 3 x5 – 9 x6 + 2 x7 + 4 x8}, {– 0.961 x4 – 3 x5 –

9 x6 + 2 x7 + 4 x8, x4}, {x4, x8}, {– 0.961 x4 – 3 x5 – 9 x6 + 2

x7 + 4 x8}, { x4}, ∅}.

Taking unions of members of Z gives the class

g  = {X, {– 0.948 x4 – 4 x5 – 12 x6 + 3 x7 + 6 x8,  x6 + x7 +

x8, – 0.961 x4 – 3 x5 – 9 x6 + 2 x7 + 4 x8}, {– 0.961 x4 – 3 x5 –

9 x6 + 2 x7 + 4 x8, x4}, {x4, x8}, {x8}, {x4}, ∅, {– 0.948 x4 – 4

x5 – 12 x6 + 3 x7 + 6 x8, x6 + x7 + x8, – 0.961 x4 – 3 x5 – 9 x6 + 2 x7

+ 4 x8, x4}, {– 0.961 x4 – 3 x5 – 9 x6 + 2 x7 + 4 x8, x4, x8}},

which is a topology on X generated by Y.

Here made research showed that on the set X of the

coefficients xj, (4 ≤ j ≤ 8) of the chemical reaction (5.6)

can be generated many topologies. A general topological

problem shall be given in the next section. 

AN OPEN PROBLEM

According to the obtained results in this research, we

shall propose the following problem.

Problem 6.1. How many topologies can be generated

on the set X ⊂ R of all the coefficients xj, (1 ≤ j ≤ n) of the

chemical equation (2.2) of the reaction (2.1)?

The above problem is a completely new problem in

topology and chemistry too. Sure that this problem is not a

daily particular problem, just the opposite, it is a very hard

scientific problem, which we shall try to solve it in this

section.

Actually, the problem reduces to finding the number of

partial orders on a finite set. 

Solution. Now, we shall prove the following theorem,

which will be necessary for solution of the problem.

Theorem 6.2. The following relations hold

1o c  (n) = Yn[c
  c(1), c   c(2), …, c   c(n)],

2o c  c (n) = Yn[f c  (1), fc (2), …, fc (n)],

3o d (n) = Yn[d c (1), d c(2), …, d c(n)],

4o d c (n) = Yn[fd
 (1), fd (2), …, fd (n)], 

where fr = (– 1)r−1 (r – 1)!

Proof. We shall only prove 1o because the proof of 3o is

similar, and 2o and 4o are the inverses of 1o and 3o respec-

tively. 

Easy one can note that each partially ordered set of n

elements induces a partition of n, simply by considering

the cardinalities of the connected components of the given

partially ordered set. There are 

n!/[r1(1!)r1 r2(2!)r2...rn(n!)r
n],

distinct ways (up to isomorphism) of distributing n dis-

tinct elements into r(π) parts (where there are ri parts of

size i). On each of these r(π) parts we can set up any par-

tial ordering we wish and the resulting partial ordering on

X will all be distinct, since different groups of distinct ele-

ments are involved. Thus, the theorem follows immedi-

ately.

Now, by an example we shall clarify the meaning of the

above Theorem 6.2.

Example 6.3. Let’s consider the case for n = 3.

1o c  (3) = Y3[c  c(1), c  c(2), c  c(3)] = c  c(3) + 3c  c(2)

c  c(1) + (c  c(1))3 = 12 + 3·2·1 + (1)3 = 19.

2o c  c(3) = Y3[fc  (1), fc  (2), fc (3)] = f1c  (3) + f2(3c

(2)c  (1)) + f3(c  (1)) = 1·19 + (– 1)(3·3·1) + 2(1)3 = 19 – 9

+ 2 = 12.

3o
d (3) = Y3[d c(1), d c(2), d

 c(3)] = d c(3) + 3d c(2)

d c(1) + (d c(1))3 = 19 + 3·3·1 + 1 = 29.

4o
d c(3) = Y3[fd (1), fd (2), fd (3)] = f1d (3) + f2(3d

(2)d (1)) + f3(d (1)) = 1·29 + (– 1)(3·4·1) + 2(1)3 = 29 – 12

+ 2 = 19.

On the next four tables are presented the topologies

which are calculated on same way as in Example 6.3 for 1

≤ n ≤ 16.

Remark 6.4. The considered problem is solved only for

some particular cases, but its complete solution really is

extremely hard. Unfortunately, to date we did not find its

explicit general solution which can be used for all values of n.



202 Ice B. Risteski

Journal of the Korean Chemical Society

CONCLUSION

Since the traditional approach of balancing chemical

equation produces only paradoxes, it was abandoned and

substituted with modern consistent methods.

The modern methods for balancing chemical equations

work only in well-defined chemical systems. For that pur-

pose we introduced a new formal chemical system, which

is a main prerequisite of chemistry to be consistent.

The well-known classical approach of direct reduction

of hematite with a carbon here is generalized by the reac-

tions (4.1) and (5.3), which possess atoms with integers

and fractional oxidation numbers, respectively. For these

reactions are determined their general and minimal solu-

tions. The minimal solutions are determined by the author’s

method.5 From the reaction (4.1), its particular cases are

analyzed, such that it did not lose its generality. 

Also, these reactions are determined and their subgen-

erators analyzed by use of elementary theory of inequal-

ities.32

By these chemical reactions it is showed that topolog-

ical calculus is very easily applicable in chemistry and met-

allurgy, which gives a good opportunity for their extension

toward a modern way founded by virtue of point-set topol-

Table 1. Partial orders/g 0-topologies

n g 0 (n)

1 1

2 3

3 19

4 219

5 4 231

6 130 023

7 6 129 859

8 431 723 379

9 44 511  042 511

10 6 611 065 248 783

11 1 396 281 677 105 899

12 414 864  951  055 853 499

13 171 850 728  381  587  059 351

14 98  484 324  257  128  207  032  183

15 77  567  171  020  440  688 353  049 939

16 83 480 529 785 490 157 813 844 256 579

Table 2. Connected partial orders/g 0
 c-topologies

n g 0 
c (n)

1 1

2 2

3 12

4 146

5 3 060

6 101 642

7 5 106 612

8 377 403 266

9 40 299 722 580

10 6 138 497 261 882

11 1 320 327 172 853 172

12 397 571  105  288 091 506

13 166 330 355 795 371 103 700

14 96 036 130 723 851 671 469 482

15 76 070 282 980 382 554 147 600 692

16 82 226 869 197 428 315 925 408 327 266

Table 3. Quasi-orders/g  topologies

n g     (n)

1 1

2 4

3 29

4 355

5 6 942

6 209 527

7 9 535 241

8 642 779 354

9 63 260 289 423

10 8 977 053 873 043

11 1 816 846 038 736 192

12 519 355 571 065 774 021

13 207 881 393 656 668 953 041

14 115 617 051 977 054 267 807 460

15 88 736 269 118 586 244 492 485 121

16 93 411 113 411 710 039 565 210 494 095

Table 4. Connected quasi-orders/g   c topologies

n g  
c (n)

1 1

2 3

3 19

4 233

5 4 851

6 158 175

7 7 724 333

8 550 898 367

9 56 536 880 923

10 8 267 519 506 789

11 1 709 320 029 453 719

12 496 139 872 875 425 839

13 200 807 248 677 750 187 825

14 112 602 879 608 997  769 049 739

15 86 955 243 134 629 606 109 442 219

16 91 962 123 875 462 441 868 790 125 305
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ogy.

Here developed topologies are generated for some sub-

sets of solutions of reactions (4.1) and (5.3).

This article will accelerate research in the theory of

chemical equations and will give topology more one

application, such that the old stereotypical approach in

chemistry and its foundation will be substituted with a

new sophisticated topological calculus. 
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