• Title/Summary/Keyword: Complex parts

Search Result 914, Processing Time 0.031 seconds

Analysis of Stainless Steel Tubes Bendability (스테인레스 관재의 굽힘 특성 분석)

  • Lee, G.Y.;Lee, H.J.;Yi, H.K.;Kim, Y.K.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.244-247
    • /
    • 2009
  • Hydroformed parts have higher dimensional accuracy, structural strength, and dimensional repeatability. Particularly in the automotive industry, manufacturing of parts with complex shapes from tubular materials sometimes requires one or more pre-forming operations such as bending before the hydroforming process. The pre-bending process is an important factor for successful hydroforming in the case where the perimeter of the blank is nearly the same as that of final product. The bendability of a tube depends on the parameters such as the bending radius, variation of the diameter, thickness, hardness. This study shows the analysis of bending through the stainless steel tubes bent to rotary draw bending machine.

  • PDF

Powder Injection Molding Technology (분말 사출 성형 기술)

  • 하태권;성환진;안상호;장영원
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.521-528
    • /
    • 2003
  • Powder injection molding (PIM) uses the shaping advantage of injection molding but is applicable to metals and ceramics. This process combines a small quantity of polymer with an inorganic powder to form a feedstock that can be molded. After shaping, the polymeric binder is extracted and the powder is sintered, often to near-theoretical densities. According1y, PIM delivers structural materials in a shaping technology previously restricted to polymers. The process overcomes the shape limitations of traditional powder compaction, the costs of machining, the productivity limits of isostatic pressing and slip casting, and the defect and tolerance limitations of conventional casting. Since 1980s when major attention was given to PIM process, it has been widening the application area from small parts with complex shape and tailored properties to structural parts requiring strength and ductility as in automotive, military and medical industries.

New Multi-Function Sizing Centre (MFC)

  • Rundel, Albert;Rauch, Peter
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.745-746
    • /
    • 2006
  • This lecture introduces new press, adapter and control concepts to size multi-level sintered components. The essential thing here is that the advantages of the multi-plate technology have been applied to the sizing adapter concept. Thus, the new concept meets the demands for a modern P/M manufacture and offers sufficient potential to size any future, complex sintered components such as synchronizer hubs, oil pump wheels and VCT parts with highest precision. Furthermore, it outlines a new flexible concept for the parts transfer, including feeding, orientation and lubrication while responding to the high demands on process stability and short change-over times.

  • PDF

Surface Modeling of Forebody's Hull Form Using Form Parameters and Fair-Skinning (형상 파라메터와 평활화 스키닝을 이용한 선수 선형 곡면 모델링)

  • Kim, Hyun-Cheol;HwangBo, Seung-Myun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.601-610
    • /
    • 2008
  • This paper deals with a new geometrical surface modeling method of forebody's hull form which is fully defined by form parameters. The complex hull form in the forebody can be modeled by the combination of three parts: bare hull, bulbous bow and blending part which connects a bare hull and a bulbous bow. All these subdomain parts are characterized by each own form parameters and constructed with simple surface model. For this, we need only 2-dimensional hull form data and then the form parameters are calculated automatically from these data. Finally, the smooth hull form surfaces are generated by parametric design and fair-skinning. In the practical point of view, we show that this new method can be useful and efficient modeling tool by applying to the hull form surface modeling of Panamax container's forebody.

A Study on Implementation of Out-of-Step Detection Algorithm using VHDL (VHDL을 이용한 동기탈조 검출 알고리즘 구현에 관한 연구)

  • Kim, Chul-Hwan;Kwon, O-Sang
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.5
    • /
    • pp.179-184
    • /
    • 2006
  • In a power system, an out-of-step condition causes a variety of risk such as serious damage to system elements, tripping of loads and generators, mal-operation of relays, etc. Therefore, it is very important to detect the out-of- step condition and take a proper measure. This paper presents a study on implementation of out-of-step detection algorithm using VHDL(Very high speed Hardware Description Language). The structure of out-of-step detection algorithm is analyzed for development of out-of-step detection relay on the FPGA(Field Programmable Gate Array). The out-of-step algorithm is separated to 4 parts: DFT IP, complex power calculation IP, out-of-step detection IP, control unit. Each parts are developed and simulated by using VHDL.

Planning Demand- and Legislation-Driven Remanufacturing for a Product Family: A Model for Maximizing Economic and Environmental Potential

  • Kwak, Minjung
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.2
    • /
    • pp.159-174
    • /
    • 2015
  • Remanufacturing used, end-of-life products is a complex problem involving multiple types of products that may share common parts. Recovery targets assigned by market demand and environmental legislation add more difficulty to the problem. Manufacturers now need to achieve specified take-back and recovery rates while fulfilling demands for remanufactured products. To assists in the demand- and legislation-driven remanufacturing of a family of products (i.e., multiple products that share common parts), this paper introduces a bi-objective mixed integer linear programming (MILP) model for optimizing remanufacturing. The model identifies optimal remanufacturing plans for a product family, whereby, the remanufacturer can achieve demand and recovery targets more profitably and in an environmentally-friendly manner. The model can also be used to quantify and justify the economic and environmental benefits of a product family from a remanufacturing perspective. A case study is presented for remanufacturing an alternatorfamily of products.

Smart Factory as a Set of Essential Technologies of 4th Industrial Revolution (4차 산업혁명 요소기술 집합체로써의 스마트팩토리)

  • Seo, Dayoon;Bae, Sung Min
    • Journal of Institute of Convergence Technology
    • /
    • v.7 no.2
    • /
    • pp.21-23
    • /
    • 2017
  • Smart Factories could be regarded as a result of the integration of various key technologies of the fourth industrial revolutions. In smart factory, the IoT (Internet of things) is applied to capture the data generated by the production facility, store and analyze data generated in real time using Big Data technology. In addition, 3D printers are used to print expensive and complex parts, industrial robots supply materials and parts to the production site, store finished products in warehouses. In this paper, we introduced the definition of smart factory and change of job market. Also, we summarize several national policies to support enhancing transformation process of smart factory.

Forming of Flat Type Automotive Suspension Cross Member with High Strength Steel (고강도강을 이용한 평판형 승용차 서스펜션 크로스 멤버의 성형)

  • Yin, Jeong-Je
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.155-163
    • /
    • 2011
  • The flat type automotive cross members with high strength steel have advantages in light weight and fewer parts compared to the hump type cross members. But the complex part shape of the flat type cross member and the poor formability of high strength steel make it difficult to form the parts without forming defects, such as splits and wrinkles. The purpose of this study is to develop the flat type automotive cross member with high strength steel. For that purpose, drawing processes are evaluated using PAM-$STAMP^{TM}$ and proper draw die and blank designs are proposed. Using the proposed die and blank design, the flat type upper and lower cross member could be formed successfully without forming defects.

An Analysis of Stress Pattern in the Coracoclavicular Ligaments with Scapular Movements: A Cadaveric Study Using Finite Element Model

  • Kim, Yoon Sang;Kim, In-Sung;Yoo, Yon-Sik;Jang, Seong-Wook;Yang, Cheol-Jung
    • Clinics in Shoulder and Elbow
    • /
    • v.18 no.3
    • /
    • pp.152-158
    • /
    • 2015
  • Background: Acromioclavicular (AC) stability is maintained through a complex combination of soft-tissue restraints that include coracoclavicular (CC), AC ligament and overlying muscles. Among these structures, the role of the CC ligament has continued to be studied because of its importance on shoulder kinematics, especially after AC injury. This study was designed to determine the geometric change of conoid and trapezoid ligaments and resulting stresses on these ligaments according to various scapular motions. Methods: The scapuloclavicular (SC) complex was isolated from a fresh-frozen cadaver by removing all soft tissues except the AC and CC ligaments. The anatomically aligned SC complex was then scanned with a high-resolution computed tomography scanner into 0.6- mm slices. The Finite element model of the SC complex was obtained and used for calculating the stress on different parts of the CC ligaments with simulated movements of the scapula. Results: Average stress on the conoid ligament during anterior tilt, internal rotation, and scapular protraction was higher, whereas the stress on the trapezoid ligament was more prominent during posterior tilt, external rotation, and retraction. Conclusions: We conclude that CC ligament plays an integral role in regulating horizontal SC motion as well as complex motions indicated by increased stress over the ligament with an incremental scapular position change. The conoid ligament is the key structure restraining scapular protraction that might occur in high-grade AC dislocation. Hence in CC ligament reconstructions involving only single bundle, every attempt must be made to reconstruct conoid part of CC ligament as anatomically as possible.

Fatigue Strength Analysis of Complex Planetary Gear Train of the Pitch Drive System for Wind Turbines (풍력발전용 피치 드라이브 시스템의 복합 유성기어류에 대한 피로 강도해석)

  • Kim, KwangMin;Bae, MyungHo;Cho, YonSang
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.48-53
    • /
    • 2021
  • Wind energy is considered as the most competitive energy source in terms of power generation cost and efficiency. The power train of the pitch drive for a wind turbine uses a 3-stage complex planetary gear system in being developed locally. A gear train of the pitch drive consists of an electric or hydraulic motor and a planetary decelerator, which optimizes the pitch angle of the blade for wind generators in response to the change in wind speed. However, it is prone to many problems, such as excessive repair costs in case of failure. Complex planetary gears are very important parts of a pitch drive system because of strength problem. When gears are designed for the power train of a pitch drive, it is necessary to analyze the fatigue strength of gears. While calculating the specifications of the complex planetary gears along with the bending and compressive stresses of the gears, it is necessary to analyze the fatigue strength of gears to obtain an optimal design of the complex planetary gears in terms of cost and reliability. In this study, the specifications of planetary gears are calculated using a self-developed gear design program. The actual gear bending and compressive stresses of the planetary gear system were analyzed using the Lewes and Hertz equation. Additionally, the calculated specifications of the complex planetary gears were verified by evaluating the results from the Stress - No. of cycles curves of gears.