• Title/Summary/Keyword: Complex manufacturing Line

Search Result 63, Processing Time 0.027 seconds

Cutting Process Simulation in Transient Cuts (과도 절삭에서의 절삭 공정 시뮬레이션)

  • 고정훈;조동우;윤원수;김주한
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.447-452
    • /
    • 2001
  • In most of the existing mechanistic models, the cutting process simulation is often restricted to a single path machining operation under a fixed cutting condition. Complex cutting processes such as die or mold manufacturing, however, are performed under two- or three-dimensional multiple tool paths. Since the tool paths in CNC machining are composed of line and arc segments, transient cuts are frequently occured due to the multiple paths. Even in steady cuts, the width of cut is varied with each segment. In this regard, this paper deals with the development of process simulation system for transient cuts, where continuously changing cutting configuration is computed, and then the cutting forces are predicted.

  • PDF

A Development of Control System for Agricultural Machinery by using Distributed Control (분산제어방식을 적용한 콤바인 농기계의 제어기 개발)

  • Yang, Sung-Soo;Park, Kyoung-Seok;Shin, Dong-Won;Yi, Jae-Shik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.39-45
    • /
    • 2011
  • Due to the introduction of the electronic control systems, agricultural machine is getting complicated with its special function. The complex electronics system increases difficulty of maintenances in the wiring harness system. The heavy wiring harness has some poor reliability and workability in the production line of manufacture also. So, in this study, some small local control modules are developed to complement the difficulties with the benefits of distributed control system. All of the local control modules are connected by using CAN communication. This system developed this study has the advantages of modification or alteration of wiring and local modules. All the sensors and actuators can be easily monitored and controlled by the main controller with the appropriate communication protocol made by in this study.

A Study on Machine and AGV Dispatching in Flexible Manufacturing Systems (유연생산 시스템에서 기계와 무인 운반차의 할당규칙에 관한 연구)

  • 박성현;노인규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.81-89
    • /
    • 1997
  • This study is concerned with the scheduling problems in flexible manufacturing systems(FMSs). The scheduling problem in FMSs is a complex one when the number of machines and jobs are increased. Thus, a heuristic method is recommended in order to gain near-optimal solutions in a practically acceptable time. The purpose of this study is to develope a machine and AGV dispatching algorithm. The proposed dispatching algorithm is a on-line scheduling algorithm considering the due date of parts and the status of the system in the scheduling process. In the new machine and AGV dispatching algorithm, a job priority is determined by LPT/LQS rules considering job tardiness. The proposed heuristic dispatching algorithm is evaluated by comparison with the existing dispatching rules such as LPT/LQS, SPT/LQS, EDD/LQS and MOD/LQS. The new dispatching algorithm is predominant to existing dispatching rules in 100 cases out of 100 for the mean tardiness and 89 cases out of 100 for the number of tardy jobs.

  • PDF

Process analysis of multi-stage forging by using finite element method (다단단조 CV JOINT 생산품의 유한요소해석)

  • Park, K.S.;Kim, B.J.;Kwon, S.O.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.399-402
    • /
    • 2006
  • The outer race of CV(constant velocity) joint is an important load-supporting automotive part, which transmits torque between the transmission gear box and driving wheel. The outer race is difficult to forge because its shape is very complicated and the required dimensional tolerances are very small. Traditional warm and cold forging methods have their own limitations to produce such a complex shaped part; warm forging requires complex system with relatively higher manufacturing cost, while cold forging is not applicable to materials with limited formability. Therefore, multistage forging may be advantageous to produce complex shaped parts. In order to build a multistage forging system, it is necessary to characterize mechanical properties in response to system design parameters such as temperature, forging speed and reduction. For the analysis of formability of multistage forging process, finite element method(FEM) has been used for the process analysis. As a model case, a constant velocity (CV) joint forging process is analyzed by FEM, since CV joint has a complex shape and also its required dimensional tolerances are very tight. The data acquired by FEM is compared with operational forging data obtained from an industrial production line. Based on this comparative analysis, multistage forging process for CV joints is proposed.

  • PDF

NC Program Generation Using Off-Line Teaching of Deburring Path

  • Kim, Sun-Ho;Park, Kyoung-Taik;Lee, Man-Hyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.118-126
    • /
    • 2000
  • Die-casting burr to casting process is removed by post-process for assembly and quality control of product. Though robot has been widely used for deburring job before. CNC exclusive machine is currently developed for high power, high speed machining and quick tool change. Deburring tool path with complex 3D curve type is defined to make out deburring NC program. But there is no efficient method to define it currently used methods with teaching probe on machine. In this study the efficient method to make out deburring NC program is developed. 5-axis digitizing machine is used to receive data of deburring path. And the post process for NC program generation is developed in consideration of the machining conditions. The developed system is not dependent on the skill of operator and has the advantage to maintain the flexibility of job to modify NC program due to the wear of tool and aging of the die casting.

  • PDF

Development of the High-Reliability PLC-CAN Communication Module for Construction Equipment (건설 중장비용 고신뢰성 PLC-CAN 통신 모듈 개발)

  • Ku, Ja-Yl;Jang, Se-Bong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.228-234
    • /
    • 2014
  • In the case of construction equipment, internal wiring has a very complicated structure such as an electrical wiring and hydraulic equipments. Because of these complex wiring, a lot of time is spent on maintenance and equipment manufacturing. In this paper, we design and implementation of the high-reliability PLC(Power Line Communication) -CAN(Controller Area Network) communication module to reduce electrical wiring of the construction equipment.

A Study and Application of Methodology for Applying Simulation to Car Body Assembly Line using Logical Model (Logical 모델을 활용한 자동차 차체 조립 라인의 시뮬레이션 적용을 위한 방안 연구 및 적용)

  • Koo, Lock-Jo;Park, Snag-Chul;Wang, Gi-Nam
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.4
    • /
    • pp.225-233
    • /
    • 2009
  • The objective of this paper is to examine a construction method and verify PLC logic using the logical modeling and simulation of a virtual plant has complex manufacturing system and the domain of application is car body assembly line of automotive industrial operated by PLC Program. The proposed virtual plant model for the analysis of the construction method consists of three types of components which are virtual device, intermediary transfer and controller is modeled by logical model but it the case of the verification of PLC program, HMI and PLC logic in the field substitute for the controller. The implementation of the proposed virtual plant model is conducted PLC Studio which is an object-oriented modeling language based on logical model. As a result, proposed methods enable 3D graphics is designed in the analysis step to use for verification of PLC program without special efforts.

An Application Method and Effect Analysis of the DBR(Drum-Buffer-Rope) Method Under the Re-entrant Process (재투입공정 하에서 DBR 기법 적용 방안 및 효과분석)

  • Yang, Hyunjun;Jeong, Sukjae;Yoon, SungWook
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.1
    • /
    • pp.57-69
    • /
    • 2020
  • Many researchers have recommended that DBR scheduling would be an efficient method to maintain the balance of their workload among many processes in the general flow shop. However, as product variety has increased in recent years, the process has become more complex and requires the re-entrance of raw materials and work in process. The re-entrant line has known for the complex manufacturing process that raw materials are repeatedly processed on the same machine. This study reviews the applicability of DBR against the re-entrant manufacturing line due to the distinguishing characteristics and the higher complexity caused by multiple visits of a job into the identical process. In order to apply the DBR method to the re-entrant process, the main idea is to reconstruct re-entrant process into a virtual flow process(loop) that has a single bottleneck. This study discusses the following two questions. First, DBR is also superior to traditional scheduling methods against re-entrant manufacturing line. And how we structure and detect the system bottleneck (or sub-bottleneck) through drum-buffer-rope concepts. To answer the above questions, we experimented and analyzed the effects of the applicability of DBR under the general re-entrant process model(TRC, Technology Research Center). As a result, we have identified a balance between loops for cycle time and work in process.

Fabrication of 3D Bioceramic Scaffolds using Laser Sintering Deposition System and Design of Experiment (레이저 소결 적층 시스템과 실험 계획법을 이용한 3차원 바이오 세라믹 인공지지체의 제작)

  • Lee, Chang-Hee;Sa, Min-Woo;Kim, Jong Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.59-66
    • /
    • 2019
  • In this study, we developed a novel laser sintering deposition system (LSDS) based on solid free-form fabrication (SFF) technology as it has the potential to fabricate complex geometries with controllable architecture for bone tissue engineering applications. The 3D biphasic calcium phosphate (BCP) scaffolds were fabricated with a pore size of 800㎛, a line width and height of 1000㎛, and an overall size of 8.2×8.2×8.0 mm3 according to the design of experiment (DOE) results. Additionally, an optimized manufacturing process using response surface analysis was established to fabricate 3D BCP scaffolds. The fabricated 3D BCP scaffolds were sintered at 950℃, 1050℃, 1150℃, and 1250℃ according to sintering processes with a furnace. As the sintering temperature increased, the porosity increased. Through the compressive strength test, the 3D BCP scaffolds sintered at 1050℃ presented good results of about 0.76 MPa. These results suggest that fabrication methods for 3D bioceramic scaffolds using LSDS may meet the basic requirements for bone tissue engineering.

Performance Models of Multi-stage Bernoulli Lines with Multiple Product and Dedicated Buffers (다품종 제품과 전용 대기공간을 고려한 다단계 베르누이 라인을 위한 성능 모델)

  • Park, Kyungsu;Han, Jun-Hee;Kim, Woo-Sung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.22-32
    • /
    • 2021
  • To meet rapidly changing market demands, manufacturers strive to increase both of productivity and diversity at the same time. As a part of those effort, they are applying flexible manufacturing systems that produce multiple types and/or options of products at a single production line. This paper studies such flexible manufacturing system with multiple types of products, multiple Bernoulli reliability machines and dedicated buffers between them for each of product types. As one of the prevalent control policies, priority based policy is applied at each machines to select the product to be processed. To analyze such system and its performance measures exactly, Markov chain models are applied. Because it is too complex to define all relative transient and its probabilities for each state, an algorithm to update transient state probability are introduced. Based on the steady state probability, some performance measures such as production rate, WIP-based measures, blocking probability and starvation probability are derived. Some system properties are also addressed. There is a property of non-conservation of flow, which means the product ratio at the input flow is not conserved at the succeeding flows. In addition, it is also found that increased buffer capacity does not guarantee improved production rate in this system.