• Title/Summary/Keyword: Complex channel

Search Result 587, Processing Time 0.027 seconds

Application of the V2-F Turbulence Model for Flow Analysis of Turbomachinery (V2-F 난류 모델의 터보기계 유동 해석 적용)

  • Park, Jae Hyeon;Sohn, Dong Kyung;Kim, Chang Hyun;Baek, Je Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.75-83
    • /
    • 2016
  • Since a turbomachine has complex flow characteristics, which are caused by adverse pressure gradient and high speed motion, an elaborate turbulence model is needed to accurately predict the flow. Some turbulence models such as an algebraic or a two-equation eddy viscosity model have been used for in-house RANS-code, but it is difficult to obtain good result for several complex flows. In this study, Durbin's V2-F turbulence model, which has been known for better prediction for severe flow separation, is applied to T-Flow. It was validated for simple cases such as channel and compressor cascade, and its applicability to turbomachinery was shown by analyzing internal flow of a single rotor. As a result, the V2-F turbulence model shows better blade surface pressure distribution than the one-and-two equation turbulence model.

Modeling of surface roughness in electro-discharge machining using artificial neural networks

  • Cavaleri, Liborio;Chatzarakis, George E.;Trapani, Fabio Di;Douvika, Maria G.;Roinos, Konstantinos;Vaxevanidis, Nikolaos M.;Asteris, Panagiotis G.
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.169-184
    • /
    • 2017
  • Electro-Discharge machining (EDM) is a thermal process comprising a complex metal removal mechanism. This method works by forming of a plasma channel between the tool and the workpiece electrodes leading to the melting and evaporation of the material to be removed. EDM is considered especially suitable for machining complex contours with high accuracy, as well as for materials that are not amenable to conventional removal methods. However, several phenomena can arise and adversely affect the surface integrity of EDMed workpieces. These have to be taken into account and studied in order to optimize the process. Recently, artificial neural networks (ANN) have emerged as a novel modeling technique that can provide reliable results and readily, be integrated into several technological areas. In this paper, we use an ANN, namely, the multi-layer perceptron and the back propagation network (BPNN) to predict the mean surface roughness of electro-discharge machined surfaces. The comparison of the derived results with experimental findings demonstrates the promising potential of using back propagation neural networks (BPNNs) for getting a reliable and robust approximation of the Surface Roughness of Electro-discharge Machined Components.

Fractal Approaches to Ecological and Limnological Phenomena (생태학적 ${\cdot}$ 육수학적 현상들에 대한 프랙탈의 적용)

  • Chang, Hyun-Jeong;Kang, Sin-Kyu;Lee, Do-Won
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.2 s.90
    • /
    • pp.69-79
    • /
    • 2000
  • Fractal geometry has become one of prospective research approaches as the complex structure of natural entities is not easily characterized by traditional Euclidean geometry. With the fractal geometry, we can better decipher the complex structure and identify natural and anthropogenic agents of landscape patterns occurring at different spatial scales. The usefulness of fractal, however, has not been fully appreciated among Korean academic societies, especially in ecological and limnological fields. We attempt to address three points in this study. First, we introduce the concept and dimension of fractal and review relevant research approaches, especially with respect to ecological and limnological phenomena. Second, we explore possible applications of fractal to some aspects of geography and land use characteristics in South Korea. For the analyses of fractal dimensions, we used data published in other studies previously and collected for this study. Data were analyzed by a perimeter/area method of fractal dimension for the spatial distribution of global solar radiation and leaf area index, and the movement of wild boars in forested landscapes of mid-eastern Korea. The same approach was also applied to the water channel of a hypothetical river and the shape of reservoirs in Yongin, Kyunggi Province. Finally, we discuss the results and key issues to consider when a fractal approach is employed in ecology and limnology.

  • PDF

Performance of Two-Dimensional Soft Output Viterbi Algorithm for Holographic Data Storage (홀로그래픽 저장장치를 위한 2차원 SOVA 성능 비교)

  • Kim, Jinyoung;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.815-820
    • /
    • 2012
  • We introduce two-dimensional soft output Viterbi algorithm (2D SOVA) and iterative 2D SOVA for holographic data storage. Since the holographic data storage is 2D intersymbol interference (ISI) channel, the 2D detection schemes have good performance at holographic data storage. The 2D SOVA and iterative 2D SOVA are 2D detection schemes. We introduce and compare the two 2D detection schemes. The 2D SOVA is approximately 2 dB better than one-dimensional (1D) detection scheme, and iterative 2D SOVA is approximately 1 dB better than the 2D SOVA. In contrast, the iterative 2D SOVA is approximately twice complex higher than 2D SOVA, and 2D SOVA is approximately twice complex higher than 1D detection scheme.

Valence of Social Emotions' Sense and Expression in SNS (SNS내 사회감성의 어휘적 의미와 표현에 대한 유의성)

  • Hyun, Hye-Jung;Whang, Min-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.6
    • /
    • pp.37-48
    • /
    • 2014
  • Social emotion is being highlighted as an important factor of human life in terms of quality of communication as a variety of social networks are commonly used. To understand such social emotion, this study verifies and analyzes the significance of lexical meaning and expression of emotion basically for understanding of complex meaning of social emotion. The emotional expressions represented in SNS text messages, one of the major channel of communication, are examined in this study to create scales of meaning and expression and to understand the differences deeply. As a result of the analysis, it turned out that negative assessment factors were more than positive ones among social emotional factors while positive ones were outstandingly many in the case of social emotional expression. Social emotional factors were classified by basic emotional elements and valences while emotional expression included complex meaning and especially positive elements were dominant in general.

Regulation of Transient Receptor Potential Melastatin 7 (TRPM7) Currents by Mitochondria

  • Kim, Byung Joo;Jeon, Ju-Hong;Kim, Seon Jeong;So, Insuk;Kim, Ki Whan
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.363-369
    • /
    • 2007
  • Mitochondria play a central role in energy-generating processes and may be involved in the regulation of channels and receptors. Here we investigated TRPM7, an ion channel and functional kinase, and its regulation by mitochondria. Proton ionophores such as CCCP elicited a rapid decrease in outward TRPM7 whole-cell currents but a slight increase in inward currents with pipette solutions containing no MgATP. With pipette solutions containing 3 mM MgATP, however, CCCP increased both outward and inward TRPM7 currents. This effect was reproducible and fully reversible, and repeated application of CCCP yielded similar decreases in current amplitude. Oligomycin, an inhibitor of $F_1/F_O$-ATP synthase, inhibited outward whole-cell currents but did not affect inward currents. The respiratory chain complex I inhibitor, rotenone, and complex III inhibitor, antimycin A, were without effect as were kaempferol, an activator of the mitochondrial $Ca^{2+}$ uniporter, and ruthenium red, an inhibitor of the mitochondrial $Ca^{2+}$ uniporter. These results suggest that the inner membrane potential (as regulated by proton ionophores) and the $F_1/F_O$-ATP synthase of mitochondria are important in regulating TRPM7 channels.

Analysis of Flood Control Effect by Applying the Connecting Channel in Estuary Area Including the Confluence of Two Rivers (2개의 하천이 합류하는 하구역에서의 연결수로 통수능에 따른 홍수위저감효과 분석)

  • Kim, Sooyoung;Kim, Hyung-Jun;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1065-1075
    • /
    • 2015
  • In the estuary where the structure such as river-mouth weir has been installed, the flow is developed very complicatedly due to river water from upstream, tide of the sea and floodgate operation. Especially, if basin outlets more than one exists in one estuary, the boundary conditions will be significantly more complex form. Saemangeum(SMG) project area in Korea is the most typical example. There are Mankyung river and Dongjin river in upstream. The water of them inflows into SMG project area. In the downstream, river flow was drained from inland to sea over the SMG sea dike through the sluice. The connecting channel was located between Mankyung and Dongjin basins. It functions not only as transportation by ship in ordinary period but also as flood sharing by sending flood flow to each other in flood period. Therefore, in order to secure the safety against flood, it is very important to understand the flood sharing capacity for connecting channel. In this study, the flood control effect was analyzed using numerical simulation. Delft3D was used to numerical simulation and simulated period was set up with neap tide, in which the maximum flood stage occurred due to poor drainage. Actually, three connecting channels were designed in land use plan of the SMG Master Plan, but they were simplified to a single channel for conciseness of analysis in this study. According to the results of numerical analysis, the water level difference between two basins was increased and the maximum flood stage at dike sluice was also upraised depending on decrease of conveyance. And the velocity induced by same water level difference was decreased when the conveyance became smaller. In certain conveyance above, there was almost no flood control effect. Therefore, if the results of this study are considered for design of connecting channel, it will be expected to draw the optimal conveyance for minimizing dredging construction cost while maximizing the flood control effect.

Development of Hydraulic Analysis and Assessment Models for the Restoration of Ecological Connectivity in Floodplains Isolated by Levees (하천 제방에 의하여 차단된 홍수터에서 생태적 연결성 회복을 위한 수리분석 및 평가모형 개발)

  • Chegal, Sun Dong;Cho, Gil Je;Kim, Chang Wan
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.307-314
    • /
    • 2016
  • River restoration has recently been performed not only for the improvement of the artificial parts in the past but also for the restoration of abandoned river reaches which were blocked and isolated. For the restoration of abandoned river reaches, it is important to recover the hydraulic and ecological connectivity in the isolated space by longitudinal structures like levees. But because the assessment tools to determine whether the river restoration is performed properly are so rare at present, we aim to provide a tool for assessing ecological connectivity in a target river in this study. In the first step, one-dimensional numerical model for rainfall-runoff and channel routing was developed and then applied to the watershed of the Cheongmi Stream. In this step, a numerical model was developed to assess the restoration of connectivity. The model consists of two parts: one part is to convert the results of one-dimensional channel routing into two-dimensional spatial distribution. The other is to calculate the habitat suitability index according to time steps by using two-dimensional hydraulic features. The model was applied to a restoration area of the Cheongmi Stream. The advantage of this study is that two-dimensional hydraulic analysis can be easily obtained from one-dimensional hydraulic analysis without a complex and time-consuming two-dimensional analysis. HHS (Hydraulic Habitat Suitablility) by sections of target reaches and target species can be easily obtained using the results of this study.

Optimum Rake Processing for Multipath Fading in Direct-Sequence Spread-Spectrum Communication Systems (주파수대역 직접확산 통신시스템에서 다중경로 페이딩 보상을 위한 최적 레이크 신호처리에 관한 연구)

  • 장원석;이재천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.995-1006
    • /
    • 2003
  • It is well know that in the wireless communication systems the transmitted signals can suffer from multipath fading due to the wave propagation characteristics and the obstacles over the paths, resulting in serious reduction in the power of the received signals. However, it is possible to take advantage of the inherent diversity imposed in the multipath reception if the underlying channel can be properly estimated. One of the diversity reception methods in this case is Rake processing. In this paper we study the Rake receivers for the direct-sequence spread-spectrum communication systems utilizing PN (pseudo noise) sequences to achieve spread spectrum. A conventional Rake receiver can use the finite-duration impulse (FIR) filter followed by the PN sequence demodulator, where the FIR filter coefficients are the reverse-ordered complex conjugate values of the fading channel impulse response estimates. Here, we propose a new Rake processing method by replacing the aforementioned PN code sequence with a new set of optimum demodulator coefficients. More specifically, the concept of the new optimum Rake processing is first introduced and then the optimum demodulator coefficients are theoretically derived. The performance obtained using the new optimum Rake processing is also calculated. The analytical results are verified by computer simulation. As a result, it is shown that the new optimum Rake processing method improves the MSE performance more than 10 dB over the conventional one using the fixed PN sequence demodulator. It is also shown that the new optimum Rake processing method improves the MSE performance about 10 dB over the Adaptive Correlator that performs the combining of the multipath components and PN demodulation concurrently. And finally, the MSE performance of the optimum Rake demodulator is very close to the MSE performance of OPSK demodulator under the AWGN channel.

Numerical Analysis of Wave Transformation of Bore in 2-Dimensional Water Channel and Resultant Wave Loads Acting on 2-Dimensional Vertical Structure (2차원수조내에서 단파의 변형과 구조물에 작용하는 단파파력에 관한 수치해석)

  • Lee, Kwang Ho;Kim, Chang Hoon;Kim, Do Sam;Hwang, Young Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.473-482
    • /
    • 2009
  • This study numerically discusses wave forces acting on a vertical wall such as breakwaters or revetments, subjected to incident undular or turbulent bores. Due to the complex hydrodynamics of bore, its wave forces have been predicted, mainly through laboratory experiments. Numerical simulations in this paper were carried out by CADMAS-SURF(CDIT, 2001), which is based on Navier-Stokes momentum equations and VOF method (Hirt and Nichols, 1981) for tracking free water surface. Its original source code was also partly revised to generate bore in the numerical water channel. Numerical raw data computed by CADMAS-SURF included great strong spike phenomena that show the abrupt jumps of wave loads. To resolve this undesired noise of raw data, the band-pass filter with the frequency of 5Hz was utilized. The filtered results showed reasonable agreements with the experimental results performed by Matsutomi (1991) and Ramsden (1996). It was confirmed that CADMASSURF can be applied to the design of coastal structures against tsunami bores. In addition, the transformation process and propagation speed of bores in the same 2-d water channel were discussed by the variations of water level for time and space. The numerical results indicated that the propagation speed of bore was changed due to the nonlinear interactions between negative and reflected waves.