• Title/Summary/Keyword: Complex algorithm

Search Result 2,614, Processing Time 0.034 seconds

Study on Improvement of Convergence in Harmony Search Algorithms (Harmony Search 알고리즘의 수렴성 개선에 관한 연구)

  • Lee, Sang-Kyung;Ko, Kwang-Enu;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.401-406
    • /
    • 2011
  • In order to solve a complex optimization problem more efficiently than traditional approaches, various meta-heuristic algorithms such as genetic algorithm, ant-colony algorithm, and harmony search algorithm have been extensively researched. Compared with other meta-heuristic algorithm, harmony search algorithm shows a better result to resolve the complex optimization issues. Harmony search algorithm is inspired by the improvision process of musician for most suitable harmony. In general, the performance of harmony search algorithm is determined by the value of harmony memory considering rate, and pitch adjust rate. In this paper, modified harmony search algorithm is proposed in order to derive best harmony. If the optimal solution of a specific problem can not be found for a certain period of time, a part of original harmony memory is updated as the selected suitable harmonies. Experimental results using test function demonstrate that the updated harmony memory can induce the approximation of reliable optimal solution in the short iteration, because of a few change of fitness.

Extended Snake Algorithm Using Color Variance Energy (컬러 분산 에너지를 이용한 확장 스네이크 알고리즘)

  • Lee, Seung-Tae;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.83-92
    • /
    • 2009
  • In this paper, an extended snake algorithm using color variance energy is proposed for segmenting an interest object in color image. General snake algorithm makes use of energy in image to segment images into a interesting area and background. There are many kinds of energy that can be used by the snake algorithm. The efficiency of the snake algorithm is depend on what kind of energy is used. A general snake algorithm based on active contour model uses the intensity value as an image energy that can be implemented and analyzed easily. But it is sensitive to noises because the image gradient uses a differential operator to get its image energy. And it is difficult for the general snake algorithm to be applied on the complex image background. Therefore, the proposed snake algorithm efficiently segment an interest object on the color image by adding a color variance of the segmented area to the image energy. This paper executed various experiments to segment an interest object on color images with simple or complex background for verifying the performance of the proposed extended snake algorithm. It shows improved accuracy performance about 12.42 %.

A return mapping algorithm for plane stress and degenerated shell plasticity

  • Liu, Z.;Al-Bermani, F.G.A.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.2
    • /
    • pp.185-192
    • /
    • 1995
  • A numerical algorithm for plane stress and shell elasto-plasticity is presented in this paper. The proposed strain decomposition (SD) algorithm is an elastic predictor/plastic corrector algorithm, and in the context of operator splitting, is a return mapping algorithm. However, it differs significantly from other return mapping algorithms in that only the necessary response functions are used without invoking their gradients, and the stress increment is updated only at the end of the time step. This makes the proposed SD algorithm more suitable for materials with complex yield surfaces and will guard against error accumulation during the time step. Comparative analyses of structural systems using the proposed strain decomposition (SD) algorithm and the iterative radial return (IRR) algorithm are presented. The results demonstrate the accuracy and usefulness of the proposed algorithm.

Highly Efficient and Precise DOA Estimation Algorithm

  • Yang, Xiaobo
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.293-301
    • /
    • 2022
  • Direction of arrival (DOA) estimation of space signals is a basic problem in array signal processing. DOA estimation based on the multiple signal classification (MUSIC) algorithm can theoretically overcome the Rayleigh limit and achieve super resolution. However, owing to its inadequate real-time performance and accuracy in practical engineering applications, its applications are limited. To address this problem, in this study, a DOA estimation algorithm with high parallelism and precision based on an analysis of the characteristics of complex matrix eigenvalue decomposition and the coordinate rotation digital computer (CORDIC) algorithm is proposed. For parallel and single precision, floating-point numbers are used to construct an orthogonal identity matrix. Thus, the efficiency and accuracy of the algorithm are guaranteed. Furthermore, the accuracy and computation of the fixed-point algorithm, double-precision floating-point algorithm, and proposed algorithm are compared. Without increasing complexity, the proposed algorithm can achieve remarkably higher accuracy and efficiency than the fixed-point algorithm and double-precision floating-point calculations, respectively.

Dispersive FDTD Modeling of Human Body with High Accuracy and Efficiency (정확하고 효율적인 인체 FDTD 분산 모델링)

  • Ha, Sang-Gyu;Cho, Jea-Hoon;Kim, Hyeong-Dong;Choi, Jae-Hoon;Jung, Kyung-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.108-114
    • /
    • 2012
  • We propose a dispersive finite-difference time domain(FDTD) algorithm suitable for the electromagnetic analysis of the human body. In this work, the dispersion relation of the human body is modeled by a quadratic complex rational function(QCRF), which leads to an accurate and efficient FDTD algorithm. Coefficients(involved in QCRF) for various human tissues are extracted by applying a weighted least square method(WLSM), referred to as the complex-curve fitting technique. We also presents the FDTD formulation for the QCRF-based dispersive model in detail. The QCRFbased dispersive model is significantly accurate and its FDTD implementation is more efficient than the counterpart of the Cole-Cole model. Numerical examples are used to show the validity of the proposed FDTD algorithm.

A simple iterative independent component analysis algorithm for vibration source signal identification of complex structures

  • Lee, Dong-Sup;Cho, Dae-Seung;Kim, Kookhyun;Jeon, Jae-Jin;Jung, Woo-Jin;Kang, Myeng-Hwan;Kim, Jae-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.128-141
    • /
    • 2015
  • Independent Component Analysis (ICA), one of the blind source separation methods, can be applied for extracting unknown source signals only from received signals. This is accomplished by finding statistical independence of signal mixtures and has been successfully applied to myriad fields such as medical science, image processing, and numerous others. Nevertheless, there are inherent problems that have been reported when using this technique: instability and invalid ordering of separated signals, particularly when using a conventional ICA technique in vibratory source signal identification of complex structures. In this study, a simple iterative algorithm of the conventional ICA has been proposed to mitigate these problems. The proposed method to extract more stable source signals having valid order includes an iterative and reordering process of extracted mixing matrix to reconstruct finally converged source signals, referring to the magnitudes of correlation coefficients between the intermediately separated signals and the signals measured on or nearby sources. In order to review the problems of the conventional ICA technique and to validate the proposed method, numerical analyses have been carried out for a virtual response model and a 30 m class submarine model. Moreover, in order to investigate applicability of the proposed method to real problem of complex structure, an experiment has been carried out for a scaled submarine mockup. The results show that the proposed method could resolve the inherent problems of a conventional ICA technique.

New Decoding Techniques of RS Codes for Optical Disks (광학식 디스크에 적합한 RS 부호의 새로운 복호 기법)

  • 엄흥열;김재문;이만영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.3
    • /
    • pp.16-33
    • /
    • 1993
  • New decoding algorithm of double-error-correction Reed-Solmon codes over GF(2$^{8}$) for optical compact disks is proposed and decoding algorithm of RS codes with triple-error-correcting capability is presented in this paper. First of all. efficient algorithms for estimating the number of errors in the received code words are presented. The most complex circuits in the RS decoder are parts for soving the error-location numbers from error-location polynomial, so the complexity of those circuits has a great influence on overall decoder complexity. One of the most known algorithm for searching the error-location number is Chien's method, in which all the elements of GF(2$^{m}$) are substituted into the error-location polynomial and the error-location number can be found as the elements satisfying the error-location polynomial. But Chien's scheme needs another 1 frame delay in the decoder, which reduces decoding speed as well as require more stroage circuits for the received ocode symbols. The ther is Polkinghorn method, in which the roots can be resolved directly by solving the error-location polynomial. Bur this method needs additional ROM (readonly memory) for storing tthe roots of the all possible coefficients of error-location polynomial or much more complex cicuit. Simple, efficient, and high speed method for solving the error-location number and decoding algorithm of double-error correction RS codes which reudce considerably the complexity of decoder are proposed by using Hilbert theorems in this paper. And the performance of the proposed decoding algorithm is compared with that of conventional decoding algorithms. As a result of comparison, the proposed decoding algorithm is superior to the conventional decoding algorithm with respect to decoding delay and decoder complexity. And decoding algorithm of RS codes with triple-error-correcting capability is presented, which is suitable for error-correction in digital audio tape, also.

  • PDF

Face and Hand Tracking using MAWUPC algorithm in Complex background (복잡한 배경에서 MAWUPC 알고리즘을 이용한 얼굴과 손의 추적)

  • Lee, Sang-Hwan;An, Sang-Cheol;Kim, Hyeong-Gon;Kim, Jae-Hui
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.39-49
    • /
    • 2002
  • This paper proposes the MAWUPC (Motion Adaptive Weighted Unmatched Pixel Count) algorithm to track multiple objects of similar color The MAWUPC algorithm has the new method that combines color and motion effectively. We apply the MAWUPC algorithm to face and hand tracking against complex background in an image sequence captured by using single camera. The MAWUPC algorithm is an improvement of previously proposed AWUPC (Adaptive weighted Unmatched Pixel Count) algorithm based on the concept of the Moving Color that combines effectively color and motion information. The proposed algorithm incorporates a color transform for enhancing a specific color, the UPC(Unmatched Pixel Count) operation for detecting motion, and the discrete Kalman filter for reflecting motion. The proposed algorithm has advantages in reducing the bad effect of occlusion among target objects and, at the same time, in rejecting static background objects that have a similar color to tracking objects's color. This paper shows the efficiency of the proposed MAWUPC algorithm by face and hands tracking experiments for several image sequences that have complex backgrounds, face-hand occlusion, and hands crossing.

Rule-Based Fuzzy-Neural Networks Using the Identification Algorithm of the GA Hybrid Scheme

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.101-110
    • /
    • 2003
  • This paper introduces an identification method for nonlinear models in the form of rule-based Fuzzy-Neural Networks (FNN). In this study, the development of the rule-based fuzzy neural networks focuses on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The FNN modeling and identification environment realizes parameter identification through synergistic usage of clustering techniques, genetic optimization and a complex search method. We use a HCM (Hard C-Means) clustering algorithm to determine initial apexes of the membership functions of the information granules used in this fuzzy model. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are then adjusted using the identification algorithm of a GA hybrid scheme. The proposed GA hybrid scheme effectively combines the GA with the improved com-plex method to guarantee both global optimization and local convergence. An aggregate objective function (performance index) with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. According to the selection and adjustment of the weighting factor of this objective function, we reveal how to design a model having sound approximation and generalization abilities. The proposed model is experimented with using several time series data (gas furnace, sewage treatment process, and NOx emission process data from gas turbine power plants).

Multi-level Optimization for Orthotropic Steel Deck Bridges (강바닥판교의 다단계 최적설계)

  • Cho, Hyo-Nam;Chung, Jee-Sung;Min, Daee-Hong;Lee, Kwang-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.439-448
    • /
    • 2000
  • A multi-level design synthesis (MLDA) algorithm for efficiently optimizing orthotropic steel deck bridges is proposed in the paper, because it is usually very difficult to optimize orthotropic steel deck bridges using a conventional single-level (CSL) algorithn since the bridges have a large number of members and show complex structural behaviors. In the proposed MLDS algorithms a coordination method is introduced to divide the bridges into main girders and orthotropic steel decks and decomposition method is also used to reduce the number of design variables of the decks for system level optimization. For efficient optimization of the bridges the MLDS algorithm incorporates the crucial approximation techliques such as constraints deletion and stress reanalysis. The constraint deletion technique for deflection is found to be very useful for the optimization problem of the bridges, since a deflection constraint is usually inactive in the design. Considering the complex system of the bridges, the proposed the efficient stress reanalysis technique may prove to be a very effective method, since it does not require expensive design sensitivity analyses. The applicability and robustness of the MLDS algorithm is demonstrated using various numerical examples and compared with other algorithm presently available so far.

  • PDF