• Title/Summary/Keyword: Complex Images

Search Result 1,009, Processing Time 0.031 seconds

Coronal Three-Dimensional Magnetic Resonance Imaging for Improving Diagnostic Accuracy for Posterior Ligamentous Complex Disruption In a Goat Spine Injury Model

  • Xuee Zhu;Jichen Wang;Dan Zhou;Chong Feng;Zhiwen Dong;Hanxiao Yu
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.641-648
    • /
    • 2019
  • Objective: The purpose of this study was to investigate whether three-dimensional (3D) magnetic resonance imaging could improve diagnostic accuracy for suspected posterior ligamentous complex (PLC) disruption. Materials and Methods: We used 20 freshly harvested goat spine samples with 60 segments and intact surrounding soft tissue. The animals were aged 1-1.5 years and consisted of 8 males and 12 females, which were sexually mature but had not reached adult weights. We created a paraspinal contusion model by percutaneously injecting 10 mL saline into each side of the interspinous ligament (ISL). All segments underwent T2-weighted sagittal and coronal short inversion time inversion recovery (STIR) scans as well as coronal and sagittal 3D proton density-weighted spectrally selective inversion recovery (3D-PDW-SPIR) scans acquired at 1.5T. Following scanning, some ISLs were cut and then the segments were rescanned using the same magnetic resonance (MR) techniques. Two radiologists independently assessed the MR images, and the reliability of ISL tear interpretation was assessed using the kappa coefficient. The chi-square test was used to compare the diagnostic accuracy of images obtained using the different MR techniques. Results: The interobserver reliability for detecting ISL disruption was high for all imaging techniques (0.776-0.949). The sensitivity, specificity, and diagnostic accuracy of the coronal 3D-PDW-SPIR technique for detecting ISL tears were 100, 96.9, and 97.9%, respectively, which were significantly higher than those of the sagittal STIR (p = 0.000), coronal STIR (p = 0.000), and sagittal 3D-PDW-SPIR (p = 0.001) techniques. Conclusion: Compared to other MR methods, coronal 3D-PDW-SPIR provides a more accurate diagnosis of ISL disruption. Adding coronal 3D-PDW-SPIR to a routine MR protocol may help to identify PLC disruptions in cases with nearby contusion.

A new algorithm for SIP parameter estimation from multi-frequency IP data: preliminary results (다중 주파수 IP 자료를 이용한 SIP 변수 추정)

  • Son, Jeong-Sul;Kim, Jung-Ho;Yi, Myeong-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.60-68
    • /
    • 2007
  • Conventional analysis of spectral induced polarization (SIP) data consists of measuring impedances over a range of frequencies, followed by spectral analysis to estimate spectral parameters. For the quantitative and accurate estimation of subsurface SIP parameter distribution, however, a sophisticated and stable inversion technique is required. In this study, we have developed a two-step inversion approach to obtain the two-dimensional distribution of SIP parameters. In the first inversion step, all the SIP data measured over a range of frequencies are simultaneously inverted, adopting cross regularisation of model complex resistivities at each frequency. The cross regularisation makes it possible to enhance the noise characteristics of the inversion by imposing a strong assumption, that complex resistivities should show similar characteristics over a range of frequencies. In numerical experiments, we could verify that our inversion approach successfully reduced inversion artefacts. As a second step, we have also developed an inversion algorithm to obtain SIP parameters based on the Cole-Cole model, in which frequency-dependent complex resistivities from the first step are inverted to obtain a two-dimensional distribution of SIP parameters. In numerical tests, the SIP parameter images showed a fairly good match with the exact model, which suggests that SIP imaging can provide a very useful subsurface image to complement resistivity.

One-point versus two-point fixation in the management of zygoma complex fractures

  • Lee, Kyung Suk;Do, Gi Cheol;Shin, Jae Bong;Kim, Min Hyung;Kim, Jun Sik;Kim, Nam Gyun
    • Archives of Craniofacial Surgery
    • /
    • v.23 no.4
    • /
    • pp.171-177
    • /
    • 2022
  • Background: The treatment of zygoma complex fractures is of crucial importance in the field of plastic surgery. However, surgical methods to correct zygoma complex fractures, including the number of fixation sites, differ among operators. Although several studies have compared two-point and three-point fixation, no comparative research has yet been conducted on one-point versus two-point fixation using computed tomography scans of surgical results. Therefore, the present study aimed to address this gap in the literature by comparing surgical results between one-point and two-point fixation procedures. Methods: In this study, we randomly selected patients to undergo surgery using one of two surgical methods. We analyzed patients with unilateral zygoma complex fractures unaccompanied by other fractures according to whether they underwent one-point fixation of the zygomaticomaxillary buttress or two-point fixation of the zygomaticomaxillary buttress and the zygomaticofrontal suture. We then made measurements at three points-the zygomaticofrontal suture, inferior orbital wall, and malar height-using 3-month postoperative computed tomography images and performed statistical analyses to compare the results of the two methods. Results: All three measurements (zygomaticofrontal suture, inferior orbital wall, and malar height) showed significant differences (p< 0.05) between one-point and two-point fixation. Highly significant differences were found for the zygomaticofrontal suture and malar height parameters. The difference in the inferior wall measurements was less meaningful, even though it also reached statistical significance. Conclusion: Using three parameters in a statistical analysis of imaging findings, this study demonstrated significant differences in treatment outcomes according to the number of fixations. The results indicate that bone alignment and continuity can be achieved to a greater extent by two-point fixation instead of one-point fixation.

Matching Size Determination According to Land Cover Property of IKONOS Stereo Imagery (IKONOS 입체영상의 토지피복 특성에 따른 정합영역 크기 결정)

  • Lee, Hyo-Seong;Park, Byung-Uk;Lee, Byung-Gil;Ahn, Ki-Weon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_2
    • /
    • pp.587-597
    • /
    • 2007
  • This study determines matching size for digital elevation model (DEM) production according to land cover property from IKONOS Geo-level stereo image. We applied area based matching method using correlation coefficient of pixel brightness value between the two images. After matching line (where "matching line" implies straight line that is approximated to complex non-linear epipolar geometry) is established by exterior orientation parameters to minimize search area, the matching is carried out based on this line. The experiment is performed according to land cover property, which is divided off into four areas (water, urban land, forest land and agricultural land). In each of the test areas, matching size is selected using a correlation-coefficient image and parallax image. As the results, optimum matching size of the images was selected as $81{\times}81$ pixels window, $21{\times}21$ pixels window, $119{\times}119$ pixels window and $51{\times}51$ pixels window in the water area, urban land, forest land and agricultural land, respectively.

Performance evaluation of vessel extraction algorithm applied to Aortic root segmentation in CT Angiography (CT Angiography 영상에서 대동맥 추출을 위한 혈관 분할 알고리즘 성능 평가)

  • Kim, Tae-Hyong;Hwang, Young-sang;Shin, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.196-204
    • /
    • 2016
  • World Health Organization reported that heart-related diseases such as coronary artery stenoses show the highest occurrence rate which may cause heart attack. Using Computed Tomography angiography images will allow radiologists to detect and have intervention by creating 3D roadmapping of the vessels. However, it is often complex and difficult do reconstruct 3D vessel which causes very large amount of time and previous researches were studied to segment vessels more accurate automatically. Therefore, in this paper, Region Competition, Geodesic Active Contour (GAC), Multi-atlas based segmentation and Active Shape Model algorithms were applied to segment aortic root from CTA images and the results were analyzed by using mean Hausdorff distance, volume to volume measure, computational time, user-interaction and coronary ostium detection rate. As a result, Extracted 3D aortic model using GAC showed the highest accuracy but also showed highest user-interaction results. Therefore, it is important to improve automatic segmentation algorithm in future

Clinical applications and performance of intelligent systems in dental and maxillofacial radiology: A review

  • Nagi, Ravleen;Aravinda, Konidena;Rakesh, N;Gupta, Rajesh;Pal, Ajay;Mann, Amrit Kaur
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.81-92
    • /
    • 2020
  • Intelligent systems(i.e., artificial intelligence), particularly deep learning, are machines able to mimic the cognitive functions of humans to perform tasks of problem-solving and learning. This field deals with computational models that can think and act intelligently, like the human brain, and construct algorithms that can learn from data to make predictions. Artificial intelligence is becoming important in radiology due to its ability to detect abnormalities in radiographic images that are unnoticed by the naked human eye. These systems have reduced radiologists' workload by rapidly recording and presenting data, and thereby monitoring the treatment response with a reduced risk of cognitive bias. Intelligent systems have an important role to play and could be used by dentists as an adjunct to other imaging modalities in making appropriate diagnoses and treatment plans. In the field of maxillofacial radiology, these systems have shown promise for the interpretation of complex images, accurate localization of landmarks, characterization of bone architecture, estimation of oral cancer risk, and the assessment of metastatic lymph nodes, periapical pathologies, and maxillary sinus pathologies. This review discusses the clinical applications and scope of intelligent systems such as machine learning, artificial intelligence, and deep learning programs in maxillofacial imaging.

Object-based digital watermarking methods in frequency domain (주파수 영역에서의 객체기반 디지털 워터마크)

  • Kim, Hyun-Tae;Kim, Dae-Jin;Won, Chee-Sun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.5
    • /
    • pp.9-20
    • /
    • 2000
  • In this paper we compare two frequency domain digital watermarking methods for digital Images, namely DCT(Discrete Cosine Transform) based and DFT(Discrete Fourier Transform) based methods. Unlike DCT coefficients, which always have real values, DFT coefficients normally have complex values Therefore, the DFT coefficients have amplitude and phase components Among them, the phase components are known to carry more Important information for the Images. So, we insert the watermark to the phase of the DFT coefficients only This DFT watermarking method is compared with the conventional DCT based watermarking method for the object-based watermarking problem. Experimental results show that the DFT-phase based method IS more robust to general Image processing attacks including resize, lossy compression(JPEG), blurring and median filtering. On the other hand, the DCT based method is more robust to the malicious attack which inserts different watermarks.

  • PDF

A Critical Review on C. Norberg Schulz's Theory of the 'Placeness' - Centering around Heidegger's Thought of "Openness" - (노베르그-슐츠(C. Norberg-Schulz)의 '장소성' 이론에 대한 비판적 고찰 - 하이데거(Martin Heidegger)의 "개방성(Openness)"과 "틈새내기(Rift-design)" 사유를 근거로 -)

  • Lee, Seung-Heon;Lee, Dong-Eon
    • Journal of architectural history
    • /
    • v.12 no.3
    • /
    • pp.149-162
    • /
    • 2003
  • Schulz accepted the existentialist view based on Heidegger's thought and at the same time the objectivist view making fixed this living world, evoking controversies for discussion. He could not see various presentations of the meaning of place because he perceived elements of this world individually. Thus Schulz's mixed system of understanding is sternly different from Heidegger's thought. First, Heidegger suggests that place as existential space represents the occasion revelation of incidents in Dasein. While Schulz recognizes that place is a systematic space predetermined for Dasein. Second, Heidegger interprets the placeness as creative openness in which elements comprising this world face and interact with each other into one. In contrast, Schulz defines each of the elements through signification and regards it as invariable and static. Third, Heidegger perceives that the placeness is expressed with sustainable, complex images through "rift-design" which seeks dynamic interactions between the ground and the world. While Schulz attempts to take "Genius Loci" or "habituated scene" through "gathering" as a concept he regards static and then visualize such structural two factors, producing certain internal images of place. However, limits of Schulz's theory prevent us from exerting complete imagination and discovering the inner creative world of the object. Thus the ultimate goal of paying attention to the placeness, that is, the recovery of individual identity, fails due to the prevalence and abstraction of objectified thinking. In contrast, Heidegger's thought about "openness" is a useful means of realizing the placeness. Openness may be referred to a dynamic coordination in which the earth and the world sustain each other under incessant mutual tensions, but not sticking o each other. "Rift-design" is an openness strategy to cause tense relations by preventing structuralization intentively. This is a creative design that allows seeing original seams of the object.

  • PDF

A Study on the Change of a Formative Expression in the Restorative Fashion (복고풍 패션의 조형적 표현기법 변화에 관한 연구)

  • Lee, Eun-Sook;Chang, Geung-Hae
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.12 no.2
    • /
    • pp.55-65
    • /
    • 2010
  • The present study purposed to compare formative expression between the fashion of the end of 19th century - early 20th century and that of the 21st century which were influenced by art nouveau and art deco. For this purpose, we analyzed contents in literature, Internet, etc.,. According to the results of this study, the formative expression of art nouveau were divided into continuous movement, optical illusion and decorative expression. Continuous movement was used to express fancy and soft images in the end of 19th century, and to express images giving the feeling of speed and tension in the 21st century. Optical illusion was expressed by the movement the thin and soft materials with the body movement and the movement of excessive frills adornment. And in movement produced using thin and soft materials and by the bias cutting method in the 21st century. Decorative expression was expressed as fantasy and decadent image in the end of 19th century and as mild passionate and modern image with color combination in the 21st century. The formative expression of art deco were divided into visual simplicity, contrastive loudness, and functional expression. Visual simplicity was expressed as a boyish image in the early of 20th century, but as a complex expression combining simplicity and femininity in the 21st century. Contrastive loudness was expressed by using colors both in the early of 20th century and 21st century. Functional expression was reinforced through the lightening of design and materials in the early of 20th century, but through using bias cutting high tech materials in the 21st century.

  • PDF

The Movements of Vocal Folds during Voice Onset Time of Korean Stops

  • Hong, Ki-Hwan;Kim, Hyun-Ki;Yang, Yoon-Soo;Kim, Bum-Kyu;Lee, Sang-Heon
    • Speech Sciences
    • /
    • v.9 no.1
    • /
    • pp.17-26
    • /
    • 2002
  • Voice onset time (VOT) is defined as the time interval from the oral release of a stop consonant to the onset of glottal pulsing in the following vowel. VOT is a temporal characteristic of stop consonants that reflects the complex timing of glottal articulation relative to supraglottal articulation. There have been many reports on efforts to clarify the acoustical and physiological properties that differentiate the three types of Korean stops, including acoustic, fiberscopic, aerodynamic and electromyographic studies. In the acoustic and fiberscopic studies for stop consonants, the voice onset time and glottal width during the production of stops has been known as the longest and largest in the heavily aspirated type followed by the slightly aspirated type and unaspirated types. The thyroarytenoid and posterior cricoarytenoid muscles were physiologically inter-correlated for differentiating these types of stops. However, a review of the English literature shows that the fine movement of the mucosal edges of the vocal folds during the production of stops has not been well documented. In recent. years, a new method for high-speed recording of laryngeal dynamics by use of a digital recording system allows us to observe with fine time resolution. The movements of the vocal fold edges were documented during the period of stop production using a fiberscopic system of high speed digital images. By observing the glottal width and the visual vibratory movements of the vocal folds before voice onset, the heavily aspirated stop was characterized as being more prominent and dynamic than the slightly aspirated and unaspirated stops.

  • PDF