• Title/Summary/Keyword: Complex Images

Search Result 1,009, Processing Time 0.028 seconds

EFFICIENCY AND COHERENCE IMPROVEMENT FOR MULTI APERTURE INTERFEROGRAM (MAl)

  • Jung, Hyung-Sup;Lee, Chang-Wook;Park, Wook;Kim, Sang-Wan;Nguyen, Van Trung;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.629-632
    • /
    • 2007
  • While conventional interferometric SAR (InSAR) technique is an excellent tool for displacement observation, it is only sensitive to one-dimensional deformation along the satellite's line-of-sight (LOS). Recently, a multiple aperture interferogram (MAI) technique has been developed to overcome this drawback. This method successfully extracted along-track displacements from InSAR data, based on split-beam InSAR processing, to create forward- and backward- looking interferograms, and was superior to along-track displacements derived by pixel-offset algorithm. This method is useful to measure along-track displacements. However, it does not only decrease the coherence of MAI because three co-registration and resampling procedures are required for producing MAI, but also is confined to a suitable interferometric pair of SAR images having zero Doppler centroid. In this paper, we propose an efficient and robust method to generate MAI from interferometric pair having non-zero Doppler centroid. The proposed method efficiently improves the coherence of MAI, because the co-registration of forward- and backward- single look complex (SLC) images is carried out by time shift property of Fourier transform without resampling procedure. It also successfully removes azimuth flat earth and topographic phases caused by the effect of non-zero Doppler centroid. We tested the proposed method using ERS images of the Mw 7.1 1999 California, Hector Mine Earthquake. The result shows that the proposed method improved the coherence of MAI and generalized MAI processing algorithm.

  • PDF

Preprocessing Algorithm of Cell Image Based on Inter-Channel Correlation for Automated Cell Segmentation (자동 세포 분할을 위한 채널 간 상관성 기반 세포 영상의 전처리 알고리즘)

  • Song, In-Hwan;Han, Chan-Hee;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.84-92
    • /
    • 2011
  • The automated segmentation technique of cell region in Bio Images helps biologists understand complex functions of cells. It is mightly important in that it can process the analysis of cells automatically which has been done manually before. The conventional methods for segmentation of cell and nuclei from multi-channel images consist of two steps. In the first step nuclei are extracted from DNA channel, and used as initial contour for the second step. In the second step cytoplasm are segmented from Actin channel by using Active Contour model based on intensity. However, conventional studies have some limitation that they let the cell segmentation performance fall by not considering inhomogeneous intensity problem in cell images. Therefore, the paper consider correlation between DNA and Actin channel, and then proposes the preprocessing algorithm by which the brightness of cell inside in Actin channel can be compensated homogeneously by using DNA channel information. Experiment result show that the proposed preprocessing method improves the cell segmentation performance compared to the conventional method.

A Study on the Application Technology of Three-dimensional Urban Geo-spatial Simulation using Digital Satellite Image (디지털 위성영상의 3차원 도시공간 시뮬레이션 적용기술연구)

  • 연상호
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.2
    • /
    • pp.7-12
    • /
    • 2004
  • The technique of birdeye image generation of terrain through the use of satellite digital images and digital maps are very important elements and have applications in fanning establishment as well as the actual design of several construction works in complex fields. This paper studies stereo perspective image generation as a possibility through 3-dimensional analysis combined with digital elevation data and remotely sensed images. For this, first of all, ortho-images generated by very accurate GCP and DEM from contour file makes 3-dimensional terrain analysis possible and allows stereo­viewing at the highway construction planning sites. So, we developed the technical methods for the 3-dimensional approach on the planning sites of highways by use of perspective orthoimages. From this research, diverse terrain analysis is possible through stereo perspective image generation, and can leads to various application in road construction through gain study results from access to realtime virtual spatial on the objects area in korea.

  • PDF

Quantification of 3D Pore Structure in Glass Bead Using Micro X-ray CT (Micro X-ray CT를 이용한 글라스 비드의 3차원 간극 구조 정량화)

  • Jung, Yeon-Jong;Yun, Tae-Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.83-92
    • /
    • 2011
  • The random and heterogeneous pore structure is a significant factor that dominates physical and mechanical behaviors of soils such as fluid flow and geomechanical responses driven by loading. The characterization method using non-destructive testing such as micro X-ray CT technique which has a high resolution with micrometer unit allows to observe internal structure of soils. However, the application has been limited to qualitatively observe 2D and 3D CT images and to obtain the void ratio at macro-scale although the CT images contain enormous information of materials of interests. In this study, we constructed the 3D particle and pore structures based on sequentially taken 2D images of glass beads and quantitatively defined complex pore structure with void cell and void channel. This approach was enabled by implementing image processing techniques that include coordinate transformation, binarization, Delaunay Triangulation, and Euclidean Distance Transform. It was confirmed that the suggested algorithm allows to quantitatively evaluate the distribution of void cells and their connectivity of heterogeneous pore structures for glass beads.

Slab Region Localization for Text Extraction using SIFT Features (문자열 검출을 위한 슬라브 영역 추정)

  • Choi, Jong-Hyun;Choi, Sung-Hoo;Yun, Jong-Pil;Koo, Keun-Hwi;Kim, Sang-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1025-1034
    • /
    • 2009
  • In steel making production line, steel slabs are given a unique identification number. This identification number, Slab management number(SMN), gives information about the use of the slab. Identification of SMN has been done by humans for several years, but this is expensive and not accurate and it has been a heavy burden on the workers. Consequently, to improve efficiency, automatic recognition system is desirable. Generally, a recognition system consists of text localization, text extraction, character segmentation, and character recognition. For exact SMN identification, all the stage of the recognition system must be successful. In particular, the text localization is great important stage and difficult to process. However, because of many text-like patterns in a complex background and high fuzziness between the slab and background, directly extracting text region is difficult to process. If the slab region including SMN can be detected precisely, text localization algorithm will be able to be developed on the more simple method and the processing time of the overall recognition system will be reduced. This paper describes about the slab region localization using SIFT(Scale Invariant Feature Transform) features in the image. First, SIFT algorithm is applied the captured background and slab image, then features of two images are matched by Nearest Neighbor(NN) algorithm. However, correct matching rate can be low when two images are matched. Thus, to remove incorrect match between the features of two images, geometric locations of the matched two feature points are used. Finally, search rectangle method is performed in correct matching features, and then the top boundary and side boundaries of the slab region are determined. For this processes, we can reduce search region for extraction of SMN from the slab image. Most cases, to extract text region, search region is heuristically fixed [1][2]. However, the proposed algorithm is more analytic than other algorithms, because the search region is not fixed and the slab region is searched in the whole image. Experimental results show that the proposed algorithm has a good performance.

연안 항행안전 위험시설 정보 취득 및 활용 기법

  • Yang, Chan-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.73-74
    • /
    • 2009
  • This study attempts to establish a system extracting and monitoring cultural grounds of seaweeds (lavers, brown seaweeds and seaweed fulvescens) and abalone on the basis of both KOMPSAT-2 and Terrasar-X data. The study areas are located in the northwest and southwest coast of South Korea, famous for coastal cultural grounds. The northwest site is in a high tidal range area (on the average, 6.1 m in Asan Bay) and has laver cultural grounds for the most. An semi-automatic detection system of laver facilities is described and assessed for spaceborne optic images. On the other hand, the southwest cost is most famous for seaweeds. Aquaculture facilities, which cover extensive portions of this area, can be subdivided into three major groups: brown seaweeds, capsosiphon fulvescens and abalone farms. The study is based on interpretation of optic and SAR satellite data and a detailed image analysis procedure is described here. On May 25 and June 2, 2008 the TerraSAR-X radar satellite took some images of the area. SAR data are unique for mapping those farms. In case of abalone farms, the backscatters from surrounding dykes allows for recognition and separation of abalone ponds from all other water-covered surfaces. But identification of seaweeds such as laver, brown seaweeds and seaweed fulvescens depends on the dampening effect due to the presence of the facilities and is a complex task because objects that resemble seaweeds frequently occur, particularly in low wind or tidal conditions. Lastly, fusion of SAR and optic spatial images is tested to enhance the detection of aquaculture facilities by using the panchromatic image with spatial resolution 1 meter and the corresponding multi-spectral, with spatial resolution 4 meters and 4 spectrum bands, from KOMPSAT-2. The mapping accuracy achieved for farms will be estimated and discussed after field verification of preliminary results.

  • PDF

Real-time Video Matting for Mobile Device (모바일 환경에서 실시간 영상 전경 추출 연구)

  • Yoon, Jong-Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.487-492
    • /
    • 2018
  • Recently, various applications for image processing have been ported to the mobile environment due to the expansion of the image shooting on the mobile device. However, in the case of extracting the image foreground, which is one of the most important functions of image synthesis, is difficult since it needs complex calculation. In this paper, we propose an video synthesis technique that can divide images captured by mobile devices into foreground / background and combine them in real time on target images. Considering the characteristics of mobile shooting, our system can extract automatically foreground of input video that contains weak motion when shooting. Using SIMD and GPGPU-based acceleration algorithms, SD-quality images can be processed on mobile in real time.

The Clinical Usefulness of Halo Sign on CT Image of Trauma Patients (외상환자의 전산화 단층촬영소견에서 나타난 달무리 소견의 임상적 유용성)

  • Lee, Seung Yong;Sohn, You Dong;Ahn, Hee Cheol;Kang, Gu Hyun;Choi, Jung Tae;Ahn, Moo Eob;Seo, Jeong Youl
    • Journal of Trauma and Injury
    • /
    • v.20 no.2
    • /
    • pp.144-148
    • /
    • 2007
  • Purpose: The management of hemorrhagic shock is critical for trauma patients. To assess hemorrhagic shock, the clinician commonly uses a change in positional blood pressure, the shock index, an estimate of the diameter of inferior vena cava based on sonography, and an evaluation of hypoperfusion complex shown on a CT scan. To add the finding for the hypoperfusion complex, the 'halo sign' was introduced recently. To our knowledge, this 'halo sign' has not been evaluated for its clinical usefulness, so we designed this study to evaluate its usefulness and to find the useful CT signs for hypoperfusion complex. Methods: The study was done from January 2007 to May 2007. All medical records and CT images of 124 patients with trauma were reviewed, of which 103 patients were included. Exclusion criteria was as follows: 1) age < 15 year old and 2) head trauma score of AIS ${\geq}$ 5. Results: The value of kappa, to assess the inter-observer agreement, was 0.51 (p < 0.001). The variables of the halo-sign-positive group were statistically different from those of the halo-sign-negative group. The rate of transfusion for the halo-sign-positive group was about 10 times higher than that of the halo-sign-negative group and the rate of mortality was about 6 times higher. Conclusion: In the setting of trauma, early abdominal CT can show diffuse abnormalities due to hypoperfusion complex. Recognition of these signs is important in order to prevent an unwanted outcome in hemorrhagic shock. We conclude that the halo sign is a useful one for hypoperfusion complex and that it is useful for assessing the degree of hemorrhagic shock.

Quantization Noise Reduction in Block-Coded Video Using the Characteristics of Block Boundary Area (블록 경계 영역 특성을 이용한 블록 부호화 영상에서의 양자화 잡음 제거)

  • Kwon Kee-Koo;Yang Man-Seok;Ma Jin-Suk;Im Sung-Ho;Lim Dong-Sun
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.223-232
    • /
    • 2005
  • In this paper, we propose a novel post-filtering algorithm with low computational complexity that improves the visual quality of decoded images using block boundary classification and simple adaptive filter (SAF). At first, each block boundary is classified into smooth or complex sub-region. And for smooth-smooth sub-regions, the existence of blocking artifacts is determined using blocky strength. And simple adaptive filtering is processed in each block boundary area. The proposed method processes adaptively, that is, a nonlinear 1-D 8-tap filter is applied to smooth-smooth sub-regions with blocking artifacts, and for smooth-complex or complex-smooth sub-regions, a nonlinear 1-D variant filter is applied to block boundary pixels so as to reduce the blocking and ringing artifacts. And for complex-complex sub-regions, a nonlinear 1-D 2-tap filter is only applied to adjust two block boundary pixels so as to preserve the image details. Experimental results show that the proposed algorithm produced better results than those of conventional algorithms both subjective and objective viewpoints.

Unit-load Method for the Estimation of Non-point Pollution Loads by Subcategorizing the Land-use Category Reflected in the National Land Register Data : A Case Study of Kyeongan Watershed in South korea (경안천 유역 지적공부에 나타난 특정지목의 토지이용 특성 세분화를 통한 비점오염 부하량 산정 개선방안)

  • Lee, Bum-Yeon;Lee, Chang-Hee;Ha, Do;Lee, Su-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.598-607
    • /
    • 2010
  • One of constraints in the application of unit-load method to estimate non-point pollution loads in the total water pollutant load management system (TWPLMS) is the limited numbers of applicable unit-loads. Since only 7 unit-loads are currently available for total 28 land-use categories in the national land register data, each unit-loads inevitably have to represent several land-use categories regardless of their actual land coverage characteristics. As a way to minimize the problem, this study suggested a nested application of the available unit-loads based on the analysis of high resolution aerial images taken in the Kyeongan watershed. Statistical analysis of three selected land-use categories such as school, apartment complex, and golf course showed that there exit significant (95% confidence level) relationships between the registered land-uses and actual land coverages. The school and apartment complex currently considered as 100% ground have only 65% and 80% of ground characteristics, respectively. Golf course, which is considered as 100% pasture, has about 5% of ground area. This indicates that the unit-load method using in TWPLMS can give over estimated non-point pollutant loads for the school and apartment complex (19.8~54.4%) but under estimation for the golf course (80.9%).