• Title/Summary/Keyword: Complex Functions

Search Result 1,730, Processing Time 0.027 seconds

On The Sets of f-Strongly Cesàro Summable Sequences

  • Ibrahim Sulaiman Ibrahim;Rifat Colak
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.2
    • /
    • pp.235-244
    • /
    • 2024
  • In this paper, we establish relations between the sets of strongly Cesàro summable sequences of complex numbers for modulus functions f and g satisfying various conditions. Furthermore, for some special modulus functions, we obtain relations between the sets of strongly Cesàro summable and statistically convergent sequences of complex numbers.

ON THE GROWTH OF ALGEBROID SOLUTIONS OF ALGEBRAIC DIFFERENTIAL EQUATIONS

  • Manli Liu;Linlin Wu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.597-610
    • /
    • 2024
  • Using the Nevanlinna value distribution theory of algebroid functions, this paper investigates the growth of two types of complex algebraic differential equation with algebroid solutions and obtains two results, which extend the growth of complex algebraic differential equation with meromorphic solutions obtained by Gao [4].

Multivalent Harmonic Uniformly Starlike Functions

  • Ahuja, Om;Joshi, Santosh;Sangle, Naveneet
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.545-555
    • /
    • 2009
  • In this paper, we investigate a generalized family of complex-valued harmonic functions that are multivalent, sense-preserving, and are associated with k-uniformly harmonic functions in the unit disk. The results obtained here include a number of known and new results as their special cases.

STARLIKENESS OF MULTIVALENT MEROMORPHIC HARMONIC FUNCTIONS

  • Murugusundaramoorthy, G.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.4
    • /
    • pp.553-564
    • /
    • 2003
  • We give sufficient coefficient conditions for starlikeness of a class of complex-valued multivalent meromorphic harmonic and orientation preserving functions in outside of the unit disc. These coefficient conditions are also shown to be necessary if the coefficients of the analytic part of the harmonic functions are positive and the coefficients of the co-analytic part of the harmonic functions are negative. We then determine the extreme points, distortion bounds, convolution and convex combination conditions for these functions.

CHARACTERIZATIONS OF SEVERAL SPLIT REGULAR FUNCTIONS ON SPLIT QUATERNION IN CLIFFORD ANALYSIS

  • Kang, Han Ul;Cho, Jeong Young;Shon, Kwang Ho
    • East Asian mathematical journal
    • /
    • v.33 no.3
    • /
    • pp.309-315
    • /
    • 2017
  • In this paper, we investigate the regularities of the hyper-complex valued functions of the split quaternion variables. We define several differential operators for the split qunaternionic function. We research several left split regular functions for each differential operators. We also investigate split harmonic functions. And we find the corresponding Cauchy-Riemann system and the corresponding Cauchy theorem for each regular functions on the split quaternion field.

MAJORIZATION PROBLEMS FOR UNIFORMLY STARLIKE FUNCTIONS BASED ON RUSCHEWEYH q-DIFFERENTIAL OPERATOR RELATED WITH EXPONENTIAL FUNCTION

  • Vijaya, K.;Murugusundaramoorthy, G.;Cho, N.E.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.71-81
    • /
    • 2021
  • The main object of this present paper is to study some majorization problems for certain classes of analytic functions defined by means of q-calculus operator associated with exponential function.

Structural basis of Ca2+ uptake by mitochondrial calcium uniporter in mitochondria: a brief review

  • Jiho, Yoo
    • BMB Reports
    • /
    • v.55 no.11
    • /
    • pp.528-534
    • /
    • 2022
  • Mitochondria are cellular organelles that perform various functions within cells. They are responsible for ATP production, cell-signal regulation, autophagy, and cell apoptosis. Because the mitochondrial proteins that perform these functions need Ca2+ ions for their activity, mitochondria have ion channels to selectively uptake Ca2+ ions from the cytoplasm. The ion channel known to play the most important role in the Ca2+ uptake in mitochondria is the mitochondrial calcium uniporter (MCU) holo-complex located in the inner mitochondrial membrane (IMM). This ion channel complex exists in the form of a complex consisting of the pore-forming protein through which the Ca2+ ions are transported into the mitochondrial matrix, and the auxiliary protein involved in regulating the activity of the Ca2+ uptake by the MCU holo-complex. Studies of this MCU holo-complex have long been conducted, but we didn't know in detail how mitochondria uptake Ca2+ ions through this ion channel complex or how the activity of this ion channel complex is regulated. Recently, the protein structure of the MCU holo-complex was identified, enabling the mechanism of Ca2+ uptake and its regulation by the MCU holo-complex to be confirmed. In this review, I will introduce the mechanism of action of the MCU holo-complex at the molecular level based on the Cryo-EM structure of the MCU holo-complex to help understand how mitochondria uptake the necessary Ca2+ ions through the MCU holo-complex and how these Ca2+ uptake mechanisms are regulated.

Complex modes in damped sandwich beams using beam and elasticity theories

  • Ahmad, Naveed;Kapania, Rakesh K.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.57-76
    • /
    • 2015
  • We investigated complex damped modes in beams in the presence of a viscoelastic layer sandwiched between two elastic layers. The problem was solved using two approaches, (1) Rayleigh beam theory and analyzed using the Ritz method, and (2) by using 2D plane stress elasticity based finite-element method. The damping in the layers was modeled using the complex modulus. Simply-supported, cantilever, and viscously supported boundary conditions were considered in this study. Simple trigonometric functions were used as admissible functions in the Ritz method. The key idea behind sandwich structure is to increase damping in a beam as affected by the presence of a highly-damped core layer vibrating mainly in shear. Different assumptions are utilized in the literature, to model shear deformation in the core layer. In this manuscript, we used FEM without any kinematic assumptions for the transverse shear in both the core and elastic layers. Moreover, numerical examples were studied, where the base and constraining layers were also damped. The loss factor was calculated by modal strain energy method, and by solving a complex eigenvalue problem. The efficiency of the modal strain energy method was tested for different loss factors in the core layer. Complex mode shapes of the beam were also examined in the study, and a comparison was made between viscoelastically and viscously damped structures. The numerical results were compared with those available in the literature, and the results were found to be satisfactory.

OBSTACLE SHAPE RECONSTRUCTION BY LOCALLY SUPPORTED BASIS FUNCTIONS

  • Lee, Ju-Hyun;Kang, Sungkwon
    • Honam Mathematical Journal
    • /
    • v.36 no.4
    • /
    • pp.831-852
    • /
    • 2014
  • The obstacle shape reconstruction problem has been known to be difficult to solve since it is highly nonlinear and severely ill-posed. The use of local or locally supported basis functions for the problem has been addressed for many years. However, to the authors' knowledge, any research report on the proper usage of local or locally supported basis functions for the shape reconstruction has not been appeared in the literature due to many difficulties. The aim of this paper is to introduce the general concepts and methodologies for the proper choice and their implementation of locally supported basis functions through the two-dimensional Helmholtz equation. The implementations are based on the complex nonlinear parameter estimation (CNPE) formula and its robust algorithm developed recently by the authors. The basic concepts and ideas are simple. The derivation of the necessary properties needed for the shape reconstructions are elementary. However, the capturing abilities for the local geometry of the obstacle are superior to those by conventional methods, the trial and errors, due to the proper implementation and the CNPE algorithm. Several numerical experiments are performed to show the power of the proposed method. The fundamental ideas and methodologies described in this paper can be applied to many other shape reconstruction problems.

A NOTE ON GENOCCHI-ZETA FUNCTIONS

  • Park, Kyoung-Ho
    • Honam Mathematical Journal
    • /
    • v.31 no.3
    • /
    • pp.399-405
    • /
    • 2009
  • In this paper, we study the Genoochi-zeta functions which are entire functions in whole complex s-plane these zeta functions have the values of the Genocchi numbers and the Genoochi polynomials at negative integers respectively. That is ${\zeta}_G(1-k)={\frac{G_k}{k}}$ and ${\zeta}_G(1-k,x)={\frac{G_k(x)}{k}}$.