• 제목/요약/키워드: Complex Color Model

검색결과 80건 처리시간 0.038초

복소 색상 모델을 이용한 회전 불변 색상-모양 기술 방법 (Rotation Invariant Color-Shape Description Method using Complex Color Model)

  • 최민석
    • 문화기술의 융합
    • /
    • 제10권6호
    • /
    • pp.869-874
    • /
    • 2024
  • 다양한 디지털 장비의 보급과 통신 및 네트워크 기술의 발전, 그리고 개인형 미디어 서비스의 확산은 멀티미디어 콘텐츠의 생산 및 유통을 폭발적으로 증가시켰다. 이미지나 동영상 같은 멀티미디어 데이터의 인식 및 검색은 데이터의 물리적인 특징들을 분석하여 정량화하고 이를 비교하는 내용 기반 인식 및 검색 방법이 요구된다. 이미지의 내용 기반 검색에서는 색상과 모양이 중요한 시각적 특징이 된다. 본 논문에서는 색상 특징과 모양 특징을 통합하여 표현하기 위해 제안된 복소 색상 모델을 사용하여 색상이 공간적으로 분포된 모양을 이미지의 회전과 무관하게 표현하고 인식하는 방법을 제안한다. 복소 색상 모델에 따라 변환된 복소 색상 이미지에 대하여 회전 불변 모양 기술자를 적용하면 회전과 무관하게 색상-모양을 표현하고 인식할 수 있음을 실험을 통하여 확인하였다.

내용 기반 이미지 검색에서 효율적인 색상-모양 표현을 위한 복소 색상 모델 (Complex Color Model for Efficient Representation of Color-Shape in Content-based Image Retrieval)

  • 최민석
    • 디지털융복합연구
    • /
    • 제15권4호
    • /
    • pp.267-273
    • /
    • 2017
  • 각종 디지털 기기와 통신 기술의 발전으로 다양한 멀티미디어 콘텐츠의 생산과 유통이 폭발적으로 증가하고 있다. 이미지와 동영상 등의 멀티미디어 데이터의 검색을 위해서는 기존의 문자 위주의 검색과는 다른 접근 방식이 필요하다. 이미지의 여러 가지 물리적인 특징들을 정량화 하여 분석하고 이를 비교하여 유사한 이미지를 검색하는 내용기반 이미지 검색에서 색상과 모양은 주요 물리적 특징들이다. 지금까지는 색상과 모양을 서로 독립적인 특징으로 분리하여 이용하였지만, 인지적 관점에서 두 특징은 밀접한 관련이 있다. 본 논문에서는 색상과 모양 특징을 동시에 표현하기 위하여 3차원 색상 정보를 2차원 복소수 형식으로 표현하는 복소 색상 모델을 이용하여 색상의 공간적 분포 모양을 기술하는 방법을 제안한다. 복소 이미지를 주파수 변환한 후 저주파 영역의 소수의 계수만으로 복원하는 실험을 통하여 제안된 방법이 색상의 공간적 분포 모양을 효율적으로 표현할 수 있음을 보였다.

Real Time Road Lane Detection with RANSAC and HSV Color Transformation

  • Kim, Kwang Baek;Song, Doo Heon
    • Journal of information and communication convergence engineering
    • /
    • 제15권3호
    • /
    • pp.187-192
    • /
    • 2017
  • Autonomous driving vehicle research demands complex road and lane understanding such as lane departure warning, adaptive cruise control, lane keeping and centering, lane change and turn assist, and driving under complex road conditions. A fast and robust road lane detection subsystem is a basic but important building block for this type of research. In this paper, we propose a method that performs road lane detection from black box input. The proposed system applies Random Sample Consensus to find the best model of road lanes passing through divided regions of the input image under HSV color model. HSV color model is chosen since it explicitly separates chromaticity and luminosity and the narrower hue distribution greatly assists in later segmentation of the frames by limiting color saturation. The implemented method was successful in lane detection on real world on-board testing, exhibiting 86.21% accuracy with 4.3% standard deviation in real time.

Skin Segmentation Using YUV and RGB Color Spaces

  • Al-Tairi, Zaher Hamid;Rahmat, Rahmita Wirza;Saripan, M. Iqbal;Sulaiman, Puteri Suhaiza
    • Journal of Information Processing Systems
    • /
    • 제10권2호
    • /
    • pp.283-299
    • /
    • 2014
  • Skin detection is used in many applications, such as face recognition, hand tracking, and human-computer interaction. There are many skin color detection algorithms that are used to extract human skin color regions that are based on the thresholding technique since it is simple and fast for computation. The efficiency of each color space depends on its robustness to the change in lighting and the ability to distinguish skin color pixels in images that have a complex background. For more accurate skin detection, we are proposing a new threshold based on RGB and YUV color spaces. The proposed approach starts by converting the RGB color space to the YUV color model. Then it separates the Y channel, which represents the intensity of the color model from the U and V channels to eliminate the effects of luminance. After that the threshold values are selected based on the testing of the boundary of skin colors with the help of the color histogram. Finally, the threshold was applied to the input image to extract skin parts. The detected skin regions were quantitatively compared to the actual skin parts in the input images to measure the accuracy and to compare the results of our threshold to the results of other's thresholds to prove the efficiency of our approach. The results of the experiment show that the proposed threshold is more robust in terms of dealing with the complex background and light conditions than others.

신경망과 적응적 스킨 칼라 모델을 이용한 얼굴 영역 검출 기법 (Human Face Detection from Still Image using Neural Networks and Adaptive Skin Color Model)

  • 손정덕;고한석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.579-582
    • /
    • 1999
  • In this paper, we propose a human face detection algorithm using adaptive skin color model and neural networks. To attain robustness in the changes of illumination and variability of human skin color, we perform a color segmentation of input image by thresholding adaptively in modified hue-saturation color space (TSV). In order to distinguish faces from other segmented objects, we calculate invariant moments for each face candidate and use the multilayer perceptron neural network of backpropagation algorithm. The simulation results show superior performance for a variety of poses and relatively complex backgrounds, when compared to other existing algorithm.

  • PDF

SG 정보를 이용한 강인한 물체 추출 알고리즘 (Robust Object Detection Algorithm Using Spatial Gradient Information)

  • 주영훈;김세진
    • 한국지능시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.422-428
    • /
    • 2008
  • 본 논문에서는 spatial gradient를 이용한 강인한 물체 추출 방법을 제안한다. 제안한 방법은 먼저 복잡한 환경과 다양한 빛의 변화에 의해 나타나는 에러 값 등을 해결하기 위해 기존에 제안된 입력 영상과 기준 영상에서 밝기와 색 성분을 이용하여 최초 배경을 제거한다. 배경을 제거한 다음, 그림자로 인식되어 전경 영역에 추가된 부분을 RGB 칼라 모델과 정규화 된 RGB 칼라 모델을 이용하여 제거하고, HSI 칼라 모델을 이용하여 불필요한 정보 값을 갖는 영역을 제거한다. 마지막으로, 배경으로 인식되어 전경으로부터 제거된 부분을 입력 영상의 공간상 정보인 spatial gradient와 HSI 칼라 모델을 이용하여 복구하는 방법을 제안한다. 마지막으로, 본 논문에서 제안한 알고리즘은 복잡하고 다양한 실내 외 환경에서의 실험을 통해 그 응용 가능성을 증명한다.

다중색상 모델과 문자배치 정보를 이용한 복잡한 배경 영상에서의 자동차 번호판 추출 (A License Plate Detection Method Using Multiple-Color Model and Character Layout Information in Complex Background)

  • 김민기
    • 한국멀티미디어학회논문지
    • /
    • 제11권11호
    • /
    • pp.1515-1524
    • /
    • 2008
  • 본 논문에서는 복잡한 배경이 나타나는 자동차 영상에서 다중색상 모델과 문자배치 정보를 이용한 번호판 추출 방법을 제안한다. 녹색 번호판과 흰색 번호판에 나타나는 문자의 배치 형태가 다르기 때문에, 먼저 번호판 색상을 추정한 후 해당 색상 번호판의 문자배치 정보를 최대한 활용하는 접근 방식을 사용하였다. RGB 색상 모델에 HSI와 YIQ 색상 모델을 결합한 다중색상 모델을 이용하여 녹색 영역이 추출되면, 해당 영역에서 추출된 연결요소를 분석하여 녹색 번호판의 문자배치 형태를 탐색한다. 이때 번호판이 추출되지 않으면, 전체 영역에서 추출된 연결요소를 분석하여 흰색 번호판의 문자배치 형태를 탐색한다. 마지막으로 번호판 문자배치 형태와 유사한 연결요소들을 묶어 번호판을 추출한다. 4개 영상에 대한 실험 결과 98.1%의 번호판 추출 성공률을 얻었으며, 제안된 방법이 빛의 세기, 그림자, 그리고 날씨의 변화에도 강건함을 알 수 있었다.

  • PDF

Skin Color Extraction in Varying Backgrounds and illumination Conditions

  • Park, Minsick;Park, Chang-Woo;Kim, Won-ha;Park, Mignon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.162.4-162
    • /
    • 2001
  • This paper presents a fuzzy-based method for classification skin color object in a complex background under varying illumination Parameters of fuzzy rule base are generated using a genetic algorithm(GA). The color model is used in the YCbCr color space. We propose a unique fuzzy system in order to accommodate varying background color and illumination condition This fuzzy system approach to skin color classification is discussed along with an overview of YCbCr color space.

  • PDF

Fuzzy Control of Anti -Sway Motion for a Remote Crane Operation

  • Park, Sun-Won;Kang, E-Sok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.42.1-42
    • /
    • 2001
  • This paper presents a fuzzy-based method for classification skin color object in a complex background under varying illumination. Parameters of fuzzy rule base are generated using a genetic algorithm(GA). The color model is used in the YCbCr color space. We propose a unique fuzzy system in order to accommodate varying background color and illumination condition. This fuzzy system approach to skin color classification is discussed along with an overview of YCbCr color space.

  • PDF

Mobile Palmprint Segmentation Based on Improved Active Shape Model

  • Gao, Fumeng;Cao, Kuishun;Leng, Lu;Yuan, Yue
    • Journal of Multimedia Information System
    • /
    • 제5권4호
    • /
    • pp.221-228
    • /
    • 2018
  • Skin-color information is not sufficient for palmprint segmentation in complex scenes, including mobile environments. Traditional active shape model (ASM) combines gray information and shape information, but its performance is not good in complex scenes. An improved ASM method is developed for palmprint segmentation, in which Perux method normalizes the shape of the palm. Then the shape model of the palm is calculated with principal component analysis. Finally, the color likelihood degree is used to replace the gray information for target fitting. The improved ASM method reduces the complexity, while improves the accuracy and robustness.