• Title/Summary/Keyword: Complex Channel

Search Result 588, Processing Time 0.023 seconds

Flow Analysis of Reverse Flow in a Channel with High Angle of Attack (받음각이 큰 평판 채널 내의 역류 유동 해석)

  • Choi, Seung;Sohn, Chang-Hyun
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.1
    • /
    • pp.37-42
    • /
    • 2007
  • Reverse flow occurs in a channel when there is an obstruction at the entry. However it has been shown recently that reverse flow can be realized without an obstruction, by staggering the sides of the channel and placing it at an angle of attack to the oncoming flow. In this study the latter flow is computationally investigated. Studies have been carried out for different widths (gap between the two walls forming the channel), and at an angle of attack of 30. The results have captured all the essential features of this complex phenomenon and show the time dependent pumping mechanism which leads to the occurrence of reverse flow.

An H.323 Gatekeeper Architecture Providing Handoff function (핸드오프를 지원하는 H.323 게이트키퍼 구조)

  • 이영신;최기무;강환종
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.341-344
    • /
    • 2001
  • H.323 proposes to use Mobile IP and H.323 ad hoc conference signaling to provide Handoff function to an H.323 mobile terminal. But the H.323 ad hoc conference signaling has a drawback. It requires an H.323 terminal to do a complex conference signaling which takes a longer signaling time. In this paper, we propose an GK architecture that provides Handoff function effectively using 3$^{rd}$ P'||'||'||'||'||'&'||'||'||'||'||'R(Third party initiated Pause and Rerouting) signaling which are done through H.245 logical channel. The GK which is implementing 3$^{rd}$ P'||'||'||'||'||'&'||'||'||'||'||'R signaling only requires an H.323 endpoint to do the H.323 basic signaling in reestablishing media channel and gives the faster Handoff signaling. To do this, our GK has derived H.245 control channel using tunneling f3r all H.323 calls including the fast connect calls which enable terminals communicate each other if they doesn't have H.245 control channel .municate each other if they doesn't have H.245 control channel .

  • PDF

A TV Ghost Cancelling Method Using Multiplicationless Adaptive Identification of Multipath Channel (다중경로채널의 무곱셈 적응인식을 이용한 TV고스트 제거방식)

  • 안상호;홍규익;김덕규;이건일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.7
    • /
    • pp.83-91
    • /
    • 1993
  • A ghost cancelling method using the multiplicationless adaptive multipath channel identification is proposed. The IIR filter and the LMS algorithm are used for ghost cancelling. The coefficients of IIR filter are obtained by multipath channel identification. The LMS algorithm which is simple relatively is used as the adaptive algorithm. An MPS is selected as the reference signal and it is used as the input of the adaptive algorithm for the multipath channel identification. If an MPS is not exist, the horizontal syne, and color burst signal can be used as the reference signal. Improving of accuracy of the ghost cancelling in the presence of the phase variation in the multipath channel, a complex processing are also performed.

  • PDF

Development of Dry/Wet Algorithm for 2-Dimensional Flow Analysis (2차원 흐름해석을 위한 마름/젖음 알고리듬의 개발)

  • Kim, Sang-Ho;Han, Kun-Yeun;Choi, Seung-Yong;Oh, Hyun-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.624-628
    • /
    • 2008
  • Two-dimensional flow analysis is a way to provide good estimates for complex flow features in flow around islands and obstructions, flow at confluence and flow in braided channel. One of difficult problems to develop a two-dimensional hydraulic model is to analyze dry and wet area in river channel. Dry/wet problem can be encountered in river and coastal engineering problems, such as flood propagation, dam break analysis, tidal processes and so on. The objective of this study is to develop an accurate and robust two-dimensional finite element method with dry/wet technique in complex natural rivers. The dry/wet technique with Deforming Grid Method was developed in this study. The Deforming Grid Method was used to construct new mesh by eliminating of dry nodes and elements. The eliminated nodes and elements were decided by considering of the rising/descending velocity of water surface elevation. Several numerical simulations were carried out to examine the performance of the Deforming Grid Method for the purpose of validation and verification of the model in rectangular and trapezoidal channel with partly dry side. The application results of the model were displayed reasonable flow distribution.

  • PDF

A Novel Image Dehazing Algorithm Based on Dual-tree Complex Wavelet Transform

  • Huang, Changxin;Li, Wei;Han, Songchen;Liang, Binbin;Cheng, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5039-5055
    • /
    • 2018
  • The quality of natural outdoor images captured by visible camera sensors is usually degraded by the haze present in the atmosphere. In this paper, a fast image dehazing method based on visible image and near-infrared fusion is proposed. In the proposed method, a visible and a near-infrared (NIR) image of the same scene is fused based on the dual-tree complex wavelet transform (DT-CWT) to generate a dehazed color image. The color of the fusion image is regulated through haze concentration estimated by dark channel prior (DCP). The experiment results demonstrate that the proposed method outperforms the conventional dehazing methods and effectively solves the color distortion problem in the dehazing process.

Experiment and Analysis on the Heat Transfer Characteristics of a Channel Filled with Metal Form (발포 금속을 사용하는 채널의 열전달 특성 실험 및 해석)

  • Son, Young-Seok;Shin, Jee-Young;Cho, Young-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.448-453
    • /
    • 2010
  • Porous media containing complex fluid passage have especially large surface area per unit volume. This study is aimed to identify the heat transfer characteristics of high-porosity metal foams in a horizontal channel. Experiment is performed under various heat flux, velocity and pore density. Nusselt number decreases with higher pore density. Metal foams shows higher heat transfer coefficients than pin-fin structure with the same porosity. This is due to the more complex flow passage and larger heat transfer area based on the structure of the metal foams. The analysis on the pin-fin structure may not be suitable to the metal foam structure but should be identified extensively through further study.

ESR Analysis of Cupric Ion Species Exchanged into NaH-ZSM-5 Gallosilicate

  • Yu, Jong-Sung;Kim, Jeong-Yeon
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • ZSM-5 gallosilicate molecular sieves was synthesized and cupric ion was ion-exchanged into the gallosilicate. The locations of Cu(ll) species in the framework and their interactions with various adsorbates were characterized by combined electron spin resonance(ESR) and electron spin echo modulation(ESEM) methods. It was found that in a fresh hydrated material, Cu(II) is octahedrally coordinated to six water molecules. This species is located in the channel intersections of two sinusoidal channels and rotates rapidly at room temperature. Evacuation removes some of these water molecules, leaving the Cu(II) coordinated to less water molecules and anchored to of oxygens in the channel wall. Dehydration produces two Cu(II) species, both of which are located in sites inaccessible to oxygen as evidenced by non-broadening of its ESR lines by oxygen. Adsorption of adsorbate molecules such as water, alcohols, ammonia, acetonitrile and ethylene on dehydrated CuNaH-ZSM-5 gallosilicate materials causes changes in the ESR spectrum of Cu(II), indicating the migration of Cu(II) into main channels to form complexes with these adsorbates there. Cu(II) forms a complex with two molecules of methanol, ethanol and propanol, respectively as evidenced by ESR parameters and ESEM data. Cu(II) also forms a square planar complex with four molecules of ammonia, based on the resolved nitrogen superhyperfine interactions and their ESEM parameters. Cu(II) forms a complex with two molecules of acetonitrile based on the ESR parameters and ESEM data. Interestingly, however, only part of Cu(II) interacts indirectly with one molecule of nonpolar ethylene based on ESR and ESEM analyses.

  • PDF

Self-Supervised Long-Short Term Memory Network for Solving Complex Job Shop Scheduling Problem

  • Shao, Xiaorui;Kim, Chang Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2993-3010
    • /
    • 2021
  • The job shop scheduling problem (JSSP) plays a critical role in smart manufacturing, an effective JSSP scheduler could save time cost and increase productivity. Conventional methods are very time-consumption and cannot deal with complicated JSSP instances as it uses one optimal algorithm to solve JSSP. This paper proposes an effective scheduler based on deep learning technology named self-supervised long-short term memory (SS-LSTM) to handle complex JSSP accurately. First, using the optimal method to generate sufficient training samples in small-scale JSSP. SS-LSTM is then applied to extract rich feature representations from generated training samples and decide the next action. In the proposed SS-LSTM, two channels are employed to reflect the full production statues. Specifically, the detailed-level channel records 18 detailed product information while the system-level channel reflects the type of whole system states identified by the k-means algorithm. Moreover, adopting a self-supervised mechanism with LSTM autoencoder to keep high feature extraction capacity simultaneously ensuring the reliable feature representative ability. The authors implemented, trained, and compared the proposed method with the other leading learning-based methods on some complicated JSSP instances. The experimental results have confirmed the effectiveness and priority of the proposed method for solving complex JSSP instances in terms of make-span.

Complex Field Network Coding with MPSK Modulation for High Throughput in UAV Networks

  • Mingfei Zhao;Rui Xue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2281-2297
    • /
    • 2024
  • Employing multiple drones as a swarm to complete missions can sharply improve the working efficiency and expand the scope of investigation. Remote UAV swarms utilize satellites as relays to forward investigation information. The increasing amount of data demands higher transmission rate and complex field network coding (CFNC) is deemed as an effective solution for data return. CFNC applied to UAV swarms enhances transmission efficiency by occupying only two time slots, which is less than other network coding schemes. However, conventional CFNC applied to UAVs is combined with constant coding and modulation scheme and results in a waste of spectrum resource when the channel conditions are better. In order to avoid the waste of power resources of the relay satellite and further improve spectral efficiency, a CFNC transmission scheme with MPSK modulation is proposed in this paper. For the proposed scheme, the satellite relay no longer directly forwards information, but transmits information after processing according to the current channel state. The proposed transmission scheme not only maintains throughput advantage of CFNC, but also enhances spectral efficiency, which obtains higher throughput performance. The symbol error probability (SEP) and throughput results corroborated by Monte Carlo simulation show that the proposed transmission scheme improves spectral efficiency in multiples compared to the conventional CFNC schemes. In addition, the proposed transmission scheme enhances the throughput performance for different topology structures while keeping SEP below a certain value.

Pseudo Complex Correlation Coefficient: with Application to Correlated Information Sources for NOMA in 5G systems

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.42-51
    • /
    • 2020
  • In this paper, the authors propose the pseudo complex correlation coefficient (PCCC) of the two complex random variables (RV), because the four real correlation coefficients (RCC) of the corresponding four real RVs cannot be obtained only from the complex correlation coefficient (CCC) of given two complex RV. Such observation is motivated by the general statement; "The complex jointly-Gaussian random M-vector cannot be completely described by the complex covariance matrix, even though the real Gaussian random 2M-vector can be completely descried by the real covariance matrix. Therefore, in order to describe completely the complex jointly-Gaussian random M-vector, we need an additional matrix, namely the complex pseudo-covariance matrix, along with the complex covariance matrix." Then, we apply PCCC to correlated information sources (CIS) for non-orthogonal multiple access (NOMA) in 5G system, and investigate impact of the proposed PCCC on the achievable data rate of the stronger channel user in the conventional successive interference cancellation (SIC) NOMA with CIS. It is shown that for the given same CCC, the achievable data rates with the different PCCC are different, because the corresponding RCC are different. We also show that as the absolute value of the same CCC increases, the impact of the different PCCC becomes more significant.