• 제목/요약/키워드: Compensation structure

검색결과 545건 처리시간 0.024초

압력에 따른 평행박막 밸브의 자율 변형을 이용한 수동형 유량 제어기 (A Passive Flow-rate Regulator Using Pressure-dependent Autonomous Deflection of Parallel Membrane Valves)

  • 도일;조영호
    • 대한기계학회논문집A
    • /
    • 제33권6호
    • /
    • pp.573-576
    • /
    • 2009
  • We present a passive flow-rate regulator, capable to compensate inlet pressure variation and to maintain a constant flow-rate for precise liquid control. Deflection of the parallel membrane valves in the passive flowrate regulator adjusts fluidic resistance according to inlet fluid pressure without any external energy. Compared to previous passive flow-rate regulators, the present device achieves precision flow regulation functions at the lower threshold compensation pressure of 20kPa with the simpler structure. In the experimental study, the fabricated device achieves the constant flow-rate of $6.09{\pm}0.32{\mu}l/s$ over the inlet pressure range of $20{\sim}50$ kPa. The present flow-rate regulator having simple structure and lower compensation pressure level demonstrates potentials for use in integrated micropump systems.

A New Robust Digital Sliding Mode Control with Disturbance Observer for Uncertain Discrete Time Systems

  • Lee, Jung-Hoon
    • 전기전자학회논문지
    • /
    • 제15권2호
    • /
    • pp.149-156
    • /
    • 2011
  • In this paper, a new discrete variable structure controller based on a new sliding surface and discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed sliding surface. The discrete version of the disturbance observer is derived for the effective compensation of the effect of uncertainties and disturbances. A corresponding control input with the disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined sliding surface for guaranteeing the designed output in the sliding surface from any initial condition to the origin for all the parameter variations and disturbances. By using Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.

칩마운터 구조물의 유연성을 고려한 위치와 진동 동시 제어 (Simultaneous Positioning and Vibration Control of Chip Mounter with Structural Flexibility)

  • 강민식
    • 반도체디스플레이기술학회지
    • /
    • 제12권1호
    • /
    • pp.53-59
    • /
    • 2013
  • Chip mounter which is used to pick chips from the pre-specified position and place them on the target location of PCB is an essential device in semiconductor and LCD industries. Quick and high precision positioning is the key technology needed to increase productivity of chip mounters. As increasing acceleration and deceleration of placing motion, structural vibration induced from inertial reactive force and flexibility of mounter structure becomes a serious problem degrading positioning accuracy. Motivated from these, this paper proposed a new control design algorithm which combines a mounter structure acceleration feedforward compensation and an extended sliding mode control for fine positioning and suppression of structural vibration, simultaneously. The feasibility of the proposed control design was verified along with some simulation results.

공진조건을 이용한 미소신호 안정도 해석 (Analysis of Small Signal Stability Using Resonance Conditions)

  • 조성진;장길수;윤태웅
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권11호
    • /
    • pp.535-543
    • /
    • 2002
  • Modern power grids are becoming more and more stressed with the load demands increasing continually. Therefore large stressed power systems exhibit complicated dynamic behavior when subjected to small disturbance. Especially, it is needed to analyze special conditions which make small signal stability structure varied according to operating conditions. This paper shows that the relation between small signal stability structure varied according to operating conditions. This paper shows that the relation between small signal stability and operating conditions can be identified well using node-focus point and 1:1 resonance point. Also, the weak point which limits operating range is found by the analysis of resonance condition, and it is shown that reactive power compensation may solve the problem in the weak points. The proposed method is applied to test systems, and the results illustrate its capabilities.

대형전동커튼 타임제어 시스템 설계 및 개발 (Design and Development of Large Electric Curtain Control System for Time Controlled)

  • 정석;정용택;박상범
    • 한국기계가공학회지
    • /
    • 제18권3호
    • /
    • pp.1-6
    • /
    • 2019
  • The purpose of this paper is to design a curtain control system for centralized management of large curtains, which includes curtain structure, electric curtain controller, communication system, user interface and remote control. Curtain structure is designed to avoid using limit switch. The system is based on microprocessor, determined the stop position and complete running time of electric curtain through time control, and achieved remote control of curtain opening and closing through wired and wireless communication modes. By establishment of a mathematical model to calculate the inertia compensation time of the electric curtain, the electric curtain can be stopped ahead of time, and the curtain can be completely closed by the inertia. The result of test experiment of 32 electric curtain controllers shows the communication success rate reached 100%.

Structural Optimization of a Thick-Walled Composite Multi-Cell Wing Box Using an Approximation Method

  • Kim, San-Hui;Kim, Pyung-Hwa;Kim, Myung-Jun;Park, Jung-sun
    • 항공우주시스템공학회지
    • /
    • 제15권2호
    • /
    • pp.1-9
    • /
    • 2021
  • In this paper, a thickness compensation function is introduced to consider the shear deformation and warping effect resulting from increased thickness in the composite multi-cell wing box. The thickness compensation function is used to perform the structure optimization of the multi-cell. It is determined by minimizing the error of an analytical formula using solid mechanics and the Ritz method. It is used to define a structural performance prediction expression due to the increase in thickness. The parameter is defined by the number of spars and analyzed by the critical buckling load and the limited failure index as a response. Constraints in structural optimization are composed of displacements, torsional angles, the critical buckling load, and the failure index. The objective function is the mass, and its optimization is performed using a genetic algorithm.

의사결정자의 대립하 항만개발 우선순위 평가 -환경친화적 항만개발의 관점에서- (Assessment of Port Development Priority with Conflicts among Decision Makers -From the Perspective of Environment-friendly Port Development-)

  • 장운재
    • 해양환경안전학회지
    • /
    • 제17권1호
    • /
    • pp.53-60
    • /
    • 2011
  • 본 연구에서는 의사결정자의 대립관계가 있는 항만개발 문제에 대한 우선순위 평가와 보상관계를 분석하였다. 이를 위해 먼저 항만개발에 대한 관련문헌을 분석하여 평가요소를 추출하였고, FSM법을 이용하여 평가요소를 구조화하고, 구조화 분석을 통해 평가항목을 선정하였다. 두 번째, 항만개발 평가 주체를 지역주민, 이용자, 지자체로 선정하고 AHP법을 이용하여 종합 평가치를 산출하였다. 세 번째 JMPR법을 이용하여 평가주체간 제휴를 구성하였을때 종합 평가결과와 대체안 선정에 따른 불만량을 최소로 하여 평가하는 방법을 제시하였다. 또한 대체안 선정에 따른 보상문제를 정량화하고 보상관계를 분석하였다. 그 결과 대상 항만중 부산항 개발이 가장 우선되어야 하며, 항만이용자는 환경에 대한 인식의 개선과, 지자체에서는 환경 친화적인 항만개발을 위한 환경 인센티브 정책을 추진해야 할 것이다.

Robust stability analysis of real-time hybrid simulation considering system uncertainty and delay compensation

  • Chen, Pei-Ching;Chen, Po-Chang
    • Smart Structures and Systems
    • /
    • 제25권6호
    • /
    • pp.719-732
    • /
    • 2020
  • Real-time hybrid simulation (RTHS) which combines physical experiment with numerical simulation is an advanced method to investigate dynamic responses of structures subjected to earthquake excitation. The desired displacement computed from the numerical substructure is applied to the experimental substructure by a servo-hydraulic actuator in real time. However, the magnitude decay and phase delay resulted from the dynamics of the servo-hydraulic system affect the accuracy and stability of a RTHS. In this study, a robust stability analysis procedure for a general single-degree-of-freedom structure is proposed which considers the uncertainty of servo-hydraulic system dynamics. For discussion purposes, the experimental substructure is a portion of the entire structure in terms of a ratio of stiffness, mass, and damping, respectively. The dynamics of the servo-hydraulic system is represented by a multiplicative uncertainty model which is based on a nominal system and a weight function. The nominal system can be obtained by conducting system identification prior to the RTHS. A first-order weight function formulation is proposed which needs to cover the worst possible uncertainty envelope over the frequency range of interest. Then, the Nyquist plot of the perturbed system is adopted to determine the robust stability margin of the RTHS. In addition, three common delay compensation methods are applied to the RTHS loop to investigate the effect of delay compensation on the robust stability. Numerical simulation and experimental validation results indicate that the proposed procedure is able to obtain a robust stability margin in terms of mass, damping, and stiffness ratio which provides a simple and conservative approach to assess the stability of a RTHS before it is conducted.

새로운 계층적 이동 보상 피라미드 부호화 방식 연구 (A Study on New Hierarchical Motion Compensation Pyramid Coding)

  • 전준현
    • 방송공학회논문지
    • /
    • 제8권2호
    • /
    • pp.181-197
    • /
    • 2003
  • 대역 분할 부호화(Sub-Band Coding: SBC)방식은 계층적 피라미드(hierarchical pyramid) 구조를 갖고 있어 움직임 예측 시 상위 계층에서는 전체적인 이동특성을 추정하고 하위 계층에서는 국부적인 세부 이동 특성을 추정할 수가 있어 실제 동영상 움직임 보상 성능이 매우 우수하다. 이와 같은 계층적 이동보상피라미드를 이용한 기존의 저대역(low-band) 이동보상 피라미드 방식에는 다음 두 가지 문제점들로 인해 매우 심각한 화질 저하가 발생한다. 첫째는 저대역 이동보상 피라미드의 각 계층에서 양자화기가 포함된 부호화기를 사용할 경우 하위 계층의 재생 영상일수록 상위 계층에서 누적된 양자화 오차(quantization error)들을 그대로 포함하기 때문에 연속된 영상에서의 정확한 이동 보상이 어렵게 된다. 둘째는 피라미드의 계층적 구조 모순으로 상위 계층예서 잘못된 움직임 추정(motion estimation)은 하위 계층으로 진행될수록 막대한 성능 저하의 원인이 된다. 본 논문에서는 우선 대역분할 부호화 방식을 이용한 대역별 계층적 이동보상에 대한 수학적 분석을 하였으며, 이를 바탕으로 제안되었던 통과 대역(pass-band) 이동보상 피라미드 방식이 누적된 양자화 오차 요인이 제거됨으로서 기존의 저대역 이동보상 피라미드에 비해 성능이 우수하다는 것을 이론적으로 분석하여 이를 증명하였다. 또한 계층적 이동보상 피라미드에서 매우 중요한 최고 계층의 초기 이동벡터 추정을 위하여 에지 패턴 분류를 이용한 이동벡터 추정 방식을 새로이 제안하였으며, 실험 결과 성능의 우수함이 입증되었다.

Compensation of Power Fluctuations of PV Generation System by SMES Based on Interleaving Technique

  • Kim, Seung-Tak;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.1983-1988
    • /
    • 2015
  • This paper proposes the enhanced application of superconducting magnetic energy storage (SMES) for the effective compensation of power fluctuations based on the interleaving technique. With increases in demand for renewable energy based photovoltaic (PV) generation system, the output power fluctuations from PV generation system due to sudden changes in environmental conditions can cause serious problems such as grid voltage and frequency variations. To solve this problem, the SMES system is applied with its superior characteristics with respect to high power density, fast response for charge and discharge operations, system efficiency, etc. In particular, the compensation capability is effectively improved by the proposed interleaving technique based on its parallel structure. The dynamic performance of the system designed using the proposed method is evaluated with several case studies through time-domain simulations.