• Title/Summary/Keyword: Compensation structure

Search Result 545, Processing Time 0.026 seconds

Short-term Electrical Load Forecasting Using Neuro-Fuzzy Model with Error Compensation

  • Wang, Bo-Hyeun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.327-332
    • /
    • 2009
  • This paper proposes a method to improve the accuracy of a short-term electrical load forecasting (STLF) system based on neuro-fuzzy models. The proposed method compensates load forecasts based on the error obtained during the previous prediction. The basic idea behind this approach is that the error of the current prediction is highly correlated with that of the previous prediction. This simple compensation scheme using error information drastically improves the performance of the STLF based on neuro-fuzzy models. The viability of the proposed method is demonstrated through the simulation studies performed on the load data collected by Korea Electric Power Corporation (KEPCO) in 1996 and 1997.

A Study on the Temperature Compensation of Load Cell Weighing Sensor (로드셀 중량센서의 온도보상에 관한 연구)

  • Park, C.W.;Choi, G.S.;An, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1298-1300
    • /
    • 1993
  • Compensation of temperature is very important to make high precision Load Cell. In this study, we developed a new type of load cell. The structure of the load cell has four strain gauges m single surface of the load cell. Also a new temperature compensation method is proposed and these, characteristics are better than previous one. This study will offer application to other type of load cell end another sensors.

  • PDF

Experimental study on the performance of compensation grouting in structured soil

  • Zheng, Gang;Zhang, Xiaoshuang;Diao, Yu;Lei, Huayang
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.335-355
    • /
    • 2016
  • Most laboratory test research has focused on grouting efficiency in homogeneous reconstituted soft clay. However, the natural sedimentary soils generally behave differently from reconstituted soils due to the effect of soil structure. A series of laboratory grouting tests were conducted to research the effect of soil structure on the performance of compensation grouting. The effects of grouting volume, overlying load and grouting location on the performance of compensation grouting under different soil structures were also studied. Reconstituted soil was altered with added cement to simulate artificial structured soil. The results showed that the final grouting efficiency was positive and significantly increased with the increase of stress ratio within a certain range when grouting in normally consolidated structured clay. However, in the same low yield stress situation, the artificial structured soil had a lower final grouting efficiency than the overconsolidated reconstituted soil. The larger of normalized grouting volume could increase the final grouting efficiency for both reconstituted and artificial structured soils. Whereas, the effect of the overlying load on final grouting efficiencies was unfavourable, and was independent of the stress ratio. As for the layered soil specimens, grouting in the artificial structured soil layer was the most efficient. In addition, the peak grouting pressure was affected by the stress ratio and the overlying load, and it could be predicted with an empirical equation when the overlying load was less than the yield stress. The end time of primary consolidation and the proportion of secondary consolidation settlement varied with the different soil structures, grouting volumes, overlying loads and grouting locations.

Proposal of bulged-type abrupt bend structure with low bending loss (굽음손실이 적은 Bulged형 Abrupt Bend 구조의 제안)

  • 한상필;김창민
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.8
    • /
    • pp.71-79
    • /
    • 1997
  • Bulged-type bends with low bending loss are newly proposed, and the FD-BPM is made use of for designing optimum structure. How to evaluate bending loss of conventional bends and how to improve the bending structure based on the phase compensation concept are described in genral. Besides simulation results for the bulged-type bends, results for the coupled-type bends and the chamfered-type bends show the most superior performance in terms of not only the bending loss but also the design tolerance.

  • PDF

Modeling and Control Design of Dynamic Voltage Restorer in Microgrids Based on a Novel Composite Controller

  • Huang, Yonghong;Xu, Junjun;Sun, Yukun;Huang, Yuxiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1645-1655
    • /
    • 2016
  • A Dynamic Voltage Restorer (DVR) model is proposed to eliminate the short-term voltage disturbances that occur in the grid-connected mode, the switching between grid-connected mode and the stand-alone mode of a Microgrid. The proposed DVR structure is based on a conventional cascaded H-bridge multilevel inverter (MLI) topology; a novel composite control strategy is presented, which could ensure the compensation ability of voltage sag by the DVR. Moreover, the compensation to specified order of harmonic is added to implement effects that zero-steady error compensation to harmonic voltage in specified order of the presented control strategy; utilizing wind turbines-batteries units as DC energy storage components in the Microgrid, the operation cost of the DVR is reduced. When the Microgrid operates under stand-alone mode, the DVR can operate on microsource mode, which could ease the power supply from the main grid (distribution network) and consequently be favorable for energy saving and emission reduction. Simulation results validate the robustness and effective of the proposed DVR system.

Structural Implications of Gravity Anomalies around Dok Island and its Surrounding Seamounts in the East Sea (독도 및 그 주변 해산 중력 이상의 지구조적 해석)

  • 김원균;김창환;박찬홍;한현철;권문상;민경덕;김백수;최영섭
    • Economic and Environmental Geology
    • /
    • v.33 no.6
    • /
    • pp.537-545
    • /
    • 2000
  • Shipborne gravity data are analyzed to investigate crustal structure under Dok Island and its surrounding seamounts located in border of Ulleung Basin and Oki Bank in the East Sea. Relatively low free-air gravity anomaly compared with the volume of seamounts may be explainable by isostatic compensation. From 1 st to 3rd Dokdo Seamounts, the decrease of free-air and Bouguer gravity anomalies implies the different degree of isostatic compensation, crustal thickness or/and density contrast. 3-D gravity modelling shows that seamounts have the mirror roots for regional Airy isostatic compensation, and from Ulleung Basin to Oki Bank, Moho discontinuity deepens and the density of crust is decreases. The results infer that study area is transitional zone from thin oceanic to thick continental crust. The depth of Moho discontinuity is about 15∼16 km, which may be interpreted as an uplifting of Mantle to shallow depth comparing with other borders of the Ulleung Basin.

  • PDF

A Novel Method for Improving the Positioning Accuracy of a Magnetostrictive Position Sensor Using Temperature Compensation (온도 보상을 이용한 자기변형 위치 센서의 정확도 향상 방법)

  • Yoo, E.J.;Park, Y.W.;Noh, M.D.
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.414-419
    • /
    • 2019
  • An ultrasonic based magnetostrictive position sensor (MPS) provides an indication of real target position. It determines the real target position by multiplying the propagation speed of ultrasonic wave and the time-of-flight between the receiving signals; one is the initial signal by an excitation current and the other is the reflection signal by the ultrasonic wave. The propagation speed of the ultrasonic wave depends on the temperature of the waveguide. Hence, the change of the propagation speed in various environments is a critical factor in terms of the positioning accuracy in the MPS. This means that the influence of the changes in the waveguide temperature needs to be compensated. In this paper, we presents a novel way to improve the positioning accuracy of MPSs using temperature compensation for waveguide. The proposed method used the inherent measurement blind area for the structure of the MPS, which can simultaneously measure the position of the moving target and the temperature of the waveguide without any additional devices. The average positional error was approximately -23.9 mm and -1.9 mm before and after compensation, respectively. It was confirmed that the positioning accuracy was improved by approximately 93%.

A Time-to-Digital Converter with PVT Variation Compensation Capability (PVT 변화 보상 기능을 가지는 시간-디지털 변환기)

  • Eunho Shin;Jongsun Kim
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.234-238
    • /
    • 2023
  • In this paper, we propose a time-to-digital converter (TDC) with compensation capability for PVT (process, voltage, and temperature) variations. A typical delay line-based TDC measures time based on the inverter's propagation delay, making it fundamentally sensitive to PVT variations. This paper presents a method to minimize the resolution change of TDC by compensating for the propagation delay caused by the PVT variations. Additionally, it dopts Cyclic Vernier TDC (CVTDC) structure to provide a wide input detection range. The proposed CVTDC with PVT compensation function is designed using a 45nm CMOS process, consumes 8mW of power, offers a TDC resolution of 5 ps, and has an input detection range of about 5.1 ns.

Mechanism and Control of Reaction Force Compensation of XY Linear Motion Stage System (XY 선형 모션 스테이지 시스템의 반발력 보상 기구와 제어)

  • Cho, Kyu-Jung;Choi, Dong-Soo;Ahn, Hyeong-Joon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.599-607
    • /
    • 2011
  • In this paper, a reaction-force compensation system for an XY linear motion stage, without an additional external isolation structure or extra motors, is developed. This system consists of a movable magnet track, a spring, a dummy weight, and a dedicated sensor module that measures the relative positions of the movable magnet track with respect to the motor coil. The reaction force compensation system is modeled, and simulations are carried out to optimize design parameters such as the moving distance of the magnet track, the transmission force, the dummy weight, and the allowed size of the mechanism. An XY linear motion stage is built, incorporating the reaction force compensation system, and the performance of the system is verified experimentally. For acceleration and deceleration values of 10 m/$s^2$, 85% of the reaction force is absorbed by the reaction force compensation system.

Compensation of the Nonlinearity of the High-Power Amplifiers with Memory Using a Digital Feedforward Scheme (디지털 피드포워드 방식을 이용한 메모리 효과가 있는 전력 증폭기의 비선형성 보상)

  • Kim, Min;Shin, Ha-Yeon;Eun, Chang-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.4
    • /
    • pp.9-17
    • /
    • 2012
  • In this paper, we show the memory effect of the high-power amplifiers for wied-band signals, present a compensation method for the nonlinearity combined with memory effect, and analyze its performance. For the modeling and the compensation of the nonlinear high-power amplifier with memory effect, we investigate the Volterra series model, the Wiener model, and the Hammerstein model. As a compensator scheme, we propose a digital feedforward technique. Compared to analog feed-forward scheme, the proposed scheme has better stability and adaptability to the environmental changes. It has a simpler structure than the conventional digital nonlinear compensation schemes. The result of computer simulations using ADS of the Agilent shows that spectral re-growth is suppressed by more than 20 dB, which amounts to at least 10 dB back-off. Considering the compensation performance, implementation complexity, and convergence rate, we could conclude the Wiener model is most suitable for the proposed scheme.