• Title/Summary/Keyword: Compensation of positioning error

Search Result 83, Processing Time 0.028 seconds

Control for a Yaw Error Compensation System of Linear Motor Stage (리니어모터 스테이지 편요오차 보상장치 제어)

  • Lee, Seung-Hyun;Kang, Min-Sig
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.997-1005
    • /
    • 2008
  • Linear motor stage is a useful device in precision engineering field because of its simple power transmission mechanism and accurate positioning. Even though linear motor stage shows fine positioning accuracy along travel axis, geometric dependent errors which relay on machining and assembling accuracy should be addressed to increase total positioning performances. In this paper, we suggests a cost effective yaw error compensation servo-system which is mounted on platform of the stage and nullify travel position dependent yaw error. This paper also provides a method of designing a sliding mode control which is robust to existing friction disturbance and model uncertainties. The reachability condition of slinding mode control for the yaw error compensating servo-system has been established. From some experimental results by using an experimental set-up, the sliding mode control showed its effective in disturbance rejection and its performance was superior to conventional linear controls.

A Study on Pricision Positioning Control using a Fuzzy Friction Compensation (퍼지마찰력보상기를 이용한 정밀위치제어에 관한 연구)

  • Yun, S.H.;Yang, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1045-1049
    • /
    • 1996
  • For the precision positioning and tracking control, the proper friction compensation is essential. The friction causes steady state error. The friction compensation based on the velocity and the controlling input or the desired velocity provides limited performance if the compensation value is fixed. In this paper, a friction compensation scheme using a fuzzy logic is proposed. The friction compensation amount is adjusted depending on the velocity and controlling input. The proposed fuzzy friction compensator with a pole-assignment controller is implemented in a linear positioning system. To illustrate the effectiveness of this scheme, computer simulations and experiments are carried out for the cases of no friction compensation, the proposed fuzzy friction compensation, and another friction compensation scheme based on velocity and control input, and the results are compared with each other.

  • PDF

Study on Simulation and Calculation Method of Thermal Error Compensation System for a Ball Screw Feed Drive (볼 스크류 이송장치 열 에러 보상 시스템의 시뮬레이션 및 계산 방법에 관한 연구)

  • Xu, Zhe Zhu;Choi, Chang;Kim, Lae-Sung;Baek, Kwon-In;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.88-93
    • /
    • 2017
  • Due to the requirement of the development of the precision manufacturing industry, the accuracy of machine tools has become a key issue in this field. A critical factor that affects the accuracy of machine tools is the feed system, which is generally driven by a ball screw. Basically, to improve the performance of the feed drive system, which will be thermally extended lengthwise by continuous usage, a thermal error compensation system that is highly dependent on the feedback temperature or positioning data is employed in the machine tool system. Due to the overdependence on measuring technology, the cost of the compensation system and low productivity level are inevitable problems in the machine tool industry. This paper presents a novel feed drive thermal error compensation system method that could compensate for thermal error without positioning or temperature feedback. Regarding this thermal error compensation system, the heat generation of components, principal of compensation, thermal model, mathematic model, and calculation method are discussed. As a result, the test data confirm the correctness of the developed feed drive thermal error compensation system very well.

Analysis and compensation of positioning error for aerostatic stage (공기정합 스테이지의 위치결정오차 분석 및 보정)

  • 황주호;박천홍;이찬흥;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.378-391
    • /
    • 2002
  • A 250mm stroke aerostatic stage, which detects position with laser scale and is driven by linear motor, is made and analyzed positioning error in 20$\pm$ 0.5 $^{\circ}C$ controlled atmosphere, aiming at investigating positioning characteristic of ultra-precision stage. We prove this aerostatic stage has a 10nm micro step resolution by experiment. By means of analyzing laser interferometer system, the scale of measuring error is about 0.2-0.4$\mu\textrm{m}$ according to refractive index error from missing the temperature change. To improve laser interferometer system, compensate refractive index error using measuring data from thermocouple. And, confirm 0.10$\mu\textrm{m}$ repeatability and 0.13 $\mu\textrm{m}$ positioning accuracy using the compensating refractive index. Also, we confirm 0.07 ${\mu}{\textrm}{m}$ repeatability of the stage using capacitive displacement sensor.

  • PDF

A Study on Efficient UWB Positioning Error Compensation Technique (효율적인 UWB 무선 측위 오차 보상 기법에 관한 연구)

  • Park, Jae-Wook;Bae, Seung-Chun;Lee, Soon-Woo;Kang, Ji-Myung;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.727-735
    • /
    • 2009
  • To alleviate positioning error using wireless ultra-wideband (UWB) is primary concern, and it has been studied how to reduce the positioning error effectively. Thanks to many repeated transmissions of UWB signals, we can have a variety of selections to point out the most precise positioning result. Towards this, scanning method has been preferred to be used due to its simplicity. This exhaustive method firstly fixes the candidate position, and calculates the sum of distances from observed positions. However, it has tremendous number of computations, and the complexity is more serious if the size of two-dimensional range is the larger. To mitigate the large number of computations, this paper proposes the technique employing genetic algorithm and block windowing. To exploit its superiority, simulations will be conducted to show the reduction of complexity, and the efficiency on positioning capability.

Friction Compensation Scheme using a Fuzzy Logic (퍼지논리를 이용한 마찰력 보상에 관한 연구)

  • Cho, Y.D.;Yang, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.679-681
    • /
    • 1995
  • In this paper, a friction compensation scheme using a fuzzy logic is presented. For the precision positioning and tracking control, the proper friction compensation is essential. Friction compensation schemes based on velocity and controlling input or desired velocity, have limitations because the compensation values are fixed. In this paper, a fuzzy friction compensation scheme adjusts the compensation value depending on the velocity and the position error. The proposed fuzzy friction compensator is implemented in a linear positioning system. The performance is illustrated by simulations and experiments.

  • PDF

불나사 열변형에 따른 가공정밀도 개선에 관한 연구

  • 조규재;홍성오;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.278-282
    • /
    • 1997
  • Thermal expension of the ball screw in semi-closed loop type CNC Lathe directly introduces positioning error along the travel axis. In this paper the thermal displacement of the ball screw is estimated by using macro variabie. The estimated dispacement of the ball screw are given to the NC in the form of pitch error compensation data into time interval. The thermal behaviour of the ball screw of the CNC Lasthe under the constant driving conditions was measured to examine the effectiveness of this compensation method. The results showed that thermal displacment of the ball screw were the positioning accuracy could be maintained to better then 6 .mu.m while using this compensation.

Relative Error Compensation of Robot Using Neural Network (신경 회로망을 이용한 로봇의 상대 오차 보상)

  • Kim, Yeon-Hoon;Jeong, Jae-Won;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.66-72
    • /
    • 1999
  • Robot calibration is very important to improve the accuracy of robot manipulators. However, the calibration procedure is very time consuming and laborious work for users. In this paper, we propose a method of relative error compensation to make the calibration procedure easier. The method is completed by a Pi-Sigma network architecture which has sufficient capability to approximate the relative relationship between the accuracy compensations and robot configurations while maintaining an efficient network learning ability. By experiment of 4-DOF SCARA robot, KIRO-3, it is shown that both the error of joint angles and the positioning error of end effector are drop to 15$\%$. These results are similar to those of other calibration methods, but the number of measurement is remarkably decreased by the suggested compensation method.

  • PDF

Deadzone compensation of a XY table using fuzzy logic (XY 테이블의 퍼지 데드존 보상)

  • 장준오
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.2
    • /
    • pp.17-28
    • /
    • 2004
  • A deadzone compensator is designed for a XY positioning table using fuzzy logic. The classification property of fuzzy logic systems makes them a natural candidate for the rejection of errors induced by the deadzone, which has regions in which it behaves differently. A tuning algorithm is given for the fuzzy logic parameters, so that the deadzone compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded parameter estimates. Formal nonlinear stability proofs are given to show that the tracking error is small. The fuzzy logic deadzone compensator is implemented on a XY positioning table to show its efficacy.